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Abstract—SnowFort, an open source wireless sensor net-
work (WSN) for data analytics, is proposed for monitoring
infrastructure and environment. The wireless sensing unit
is optimized to be low power for extremely long-term de-
ployments. Several features, such as data compression and
online reconfiguration, are introduced to further reduce
power consumption. A low power wireless sensor network
over optimized time division multiple access (TDMA)
scheme is designed to be scalable and reliable for a network
with hundreds of sensors. Real-time data visualization and
analytical tools are provided with a representational state
transfer (RESTful) application programming interface
(API). We utilize SnowFort to develop a real-time damage
detection application in structural health monitoring. We
develop a distributed algorithm robust to data loss and
validate it in a laboratory setup.
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I. INTRODUCTION

W IRELESS sensor networks (WSNs) for in-
frastructure and environmental monitoring has

evolved over several generations. Various successful ef-
forts to design and develop wireless monitoring systems
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include [1]–[3]. Comprehensive summaries and discus-
sions of system prototypes on the wireless monitoring
system are given in [4]. The wireless monitoring sys-
tem can be applied to buildings [5], [6], habitat [7],
[8], bridges [9], traffic [10], pipelines [11], volcanoes
[12], and environment [13]. The main components of
a wireless monitoring system include wireless sensing
units, wireless communication networks, and decision
support systems. Existing solutions and deployments
have focused on specific components of the system and
in general were designed for utilization by WSN experts.
Large scale adoption of WSN technology requires a
platform that addresses several challenges [14]:

• Durability: sensing units need to function for
months to years without battery replacement.

• Reliability: sensors need to reliably deliver data
over imperfect wireless communication channels.

• Adaptability: dynamically adding and removing
sensors to the system should be simple.

• Intelligence: scalable real-time validation, analysis
and processing of the data needs to be available.

• Simplicity: customizing, installing, deploying and
maintaining the system should be simple.

SnowFort, Sensor Network: Open & Wireless for daTa
analytics, is proposed in this paper [15]. SnowFort is
an open source wireless sensor system designed for
infrastructure and environmental monitoring. It simplifies
scalable implementation and deployment of WSN to
collect, cleanse, analyze and visualize infrastructure and
environmental data in real-time. It also supports a variety
of hardware platforms and can be integrated with existing
systems.

SnowFort provides an interface that simplifies integra-
tion of multiple types of sensors into the wireless unit.
The communication scheme is reliable, stable, energy
efficient and simple to diagnose. Information processing
in real-time is provided by a decision support system
(DSS) that relies in recent analytics frameworks. Snow-
Fort is able to support up to 54 sensing units per very low
cost base station. The sensing unit powered by two AA
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batteries can last between 125 to 244 days operating an
accelerometer and temperature sensor. The DSS supports
the real-time analysis and visualization of data from
multiple large scale wireless monitoring systems via a
web interface.

This paper is organized as follows. Section II discussed
related works on wireless monitoring systems. In Sec-
tion III, the system architecture, including the wireless
sensing unit and the decision support system, is dis-
cussed. In Section IV, the customized wireless communi-
cation scheme and several new features are introduced.
In Section V, an application of SnowFort in structural
health monitoring is presented. In Section VI, results
of the SnowFort system performance and experiment
results of structural health monitoring are demonstrated.
Section VII draws summaries and conclusions.

II. RELATED WORKS

Two well-known WSN data acquisition systems [16]
and [17] have power-aware optimization and support
large scale networks but lacks analytics intellgence. The
SQL-syntax query processor offers significant complica-
tions for infrastructure and environmental applications. In
addition, the systems are not optimized to address sev-
eral issues common in infrastructure and environmental
applications, such as high sampling frequency and low
data synchronization error. SnowFort not only shares the
same advantages of [16] and [17] but also addresses these
specific problems.

ISHMP system developed at the University of Illinois
at Urbana-Champaign is an open-source WSN platform
designed for structural monitoring [18]. It has been
experimentally validated for damage identification and
localization by [19] and [20]. However, ISHMP system
lacks DSS, which is a critical component of today’s
wireless monitoring system and is included in Snow-
Fort. [21] proposes a framework includes all the three
components required for wireless monitoring system.
Unlike SnowFort, which supports multipe devices and
has web interface, this system is a OS-specific executable
program. Further, the framework cannot be integrated
with any existing system that has been proposed.

The indoor wireless monitoring system in [22] cap-
tures the morphology of buildings for rapid development
and flexible management. The indoor WSN in [23]
focuses on the event logic in building management with
multi-level decision system. Both frameworks effectively
and efficiently make decisions based on sensing data.
However, they do not address network reliability and
data synchronization. [24] is an indoor Heating, Venti-
lation and Air Conditioning (HVAC) system with DSS

at the back-end. However, this HVAC system relies on
WiFi logs, not sensing units. [13] is a outdoor wireless
system for environmental monitoring. It achieves reliable
communication and data synchronization by customized
MAC and networking protocol, which is similar to
SnowFort. This system is validated by experiments and
achieved the long-term operation by employing the solar
panels. In SnowFort, the wireless sensors are deployed
in the field. The reliable wireless communication is em-
ployed for data acquisition with power-aware optimiza-
tion and data synchronization mechanism. The building
management system can be achieved on the web server.

A time-domain algorithm to detect damage of a struc-
ture via WSN is discussed in [25]. This method extracts
damage sensitive features from multiple accelerometers
and strain garages and uses hypothesis tests to decide
whether damages occur. This algorithm is centralized
batch processing. The framework presented in [26] uses
damage sensitive features for testing as well, and in
a sequential manner. [27] presents a frequency-domain
distributed algorithm for the damage detection and is
validated by using the ISHMP system. In this paper,
we extend our prior work in [26] to a time-domain
distributed algorithm with imporved resistance to com-
munication packet missing. In addition, we validate the
performances of our distributed algorithm by introducing
packet loss, which has not been discussed in [27] or other
works.

III. SYSTEM ARCHITECTURE

SnowFort is architected to address each requirement
of a scalable WSN platform. Performance requirements
and typical application constraints in infrastructure and
environmental monitoring drive the design choices for
the system. Durability and reliability for the system are
achieved by careful design of the wireless communica-
tion protocol, in particular the medium access (MAC)
layer. Simplicity and scalability are achieved by ensuring
a simplified single-hop network topology, which is exten-
sible by relying on multiple base-stations. Intelligence is
provided relying on high performance computation and
web systems to support visualization and data-processing
in real-time. The system provides high-level functions
and APIs to simplify custom development. SnowFort
strives to be transparent, and is shared as an open source
project that can enable community development of a
stable, durable, reliable, adaptable and simple solution
for infrastructure and environmental monitoring.

The system architecture of SnowFort has four parts
(Fig. 1): a wireless sensor mote, a base station, a cloud
server, and a web interface. The wireless sensor mote
is the sensing unit. The base station or access point
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intermediates a group of motes to form a network. The
cloud server and the web interface compose the decision
support system. The remainder of the section details the
functionality and design choices of each component.

Fig. 1. System architecture of SnowFort.

A. Wireless Sensor Mote

A wireless sensor mote is a battery-powered sensor
system with microprocessor, wireless transceiver, and
memory. It collects data, compresses and transmits them
to a base station. Also, the mote receives and executes
commands from the base station. The mote has analog-
to-digital converters (ADC), digital-to-analog converters
(DAC), and inter-integrated circuit (I2C) ports, which
connect and communicate with microelectromechanical
sensors (MEMS), such as accelerometer, gyroscope, and
temperature sensor. A typical mote is shown in Fig. 2.
SnowFort utilizes Contiki as the embedded operating sys-
tem (OS) for motes. Contiki is an open source OS written
in C [28]. It facilitates low level software development by
providing high-level routines to interface with a variety
of motes. It was chosen due to its simplicity, lightweight
code base, and support for multiple hardware platforms.
SnowFort modifies and extends Contiki in several ways.
We implement a simpler networking protocol and include
low level sensor functionality such as data compression
and remote reconfiguration. More details are given in
Section IV.

B. Base Station

In SnowFort, the primary roles of the base station
are coordinating communications within the network,
receiving data from motes, and transmitting data to the
cloud server via the Internet.

The base station, which is typically the single com-
ponent connected to a power source, runs in a low cost

Fig. 2. The green device (upper) is the Telosb mote with TI MSP430
microprocessor and CC2420 transceiver [29]. The blue device (lower)
is the MPU 6050 I2C sensor with one three-axis accelerometer, one
three-axis gyroscope, and one temperature sensor [30].

Linux machine (Raspberry Pi) and includes a CC2420
transceiver. Also, the base station has capability to access
the Internet with high data rates via Ethernet, cellular
network, sattllelte network, or WLAN. It executes a mod-
ifiable Python script to implement the communication
protocol to the motes, decompress the data received from
motes and transmit to the cloud server. Simple statistics
and local storage functionality are included as well but
processing capabilities are kept lightweight.

C. Cloud Server

In infrastructure and environmental monitoring appli-
cations, the decision support system (DSS) is an impor-
tant element [21]. Deploying large networks requires a
scalable and robust DSS built to handle massive data
flows, real-time processing and visualization. In Snow-
Fort, the cloud server is the primary data storage and
processing unit. It also serves as the web server for
the front-end user interface. The cloud server has three
components: a web server, a data storage, and a statistical
data processing unit.

The web server receives data posted from the base
station and handles requests from end-users. In addition,
the web server sends commands from end-users to the
base station. Multiple base stations can simultaneously
post to the server. In SnowFort, the web framework
is developed in Flask, an open source web framework
in Python. The data communication protocol between
the base station and the web server is the HTTPS
protocol. The web server also supports a JSON data
format and a representational state transfer (RESTful)
API for data communication between systems. Therefore,
any WSN which adheres to this API and data format
can use the SnowFort cloud server and web interface



4

for data visualization and analytics. This standardization
extends SnowFort visualization and analytic tools to any
existing networks beyond SnowFort motes. A standard
authentication protocol is implemented to prevent access
from unauthenticated users.

The data storage unit has two databases for storing
data. The first database stores raw data in real-time. The
second database stores cleansed real-time data which
can be used for statistical modeling. The web server
inserts the formatted data into the appropriate database
by calling a standard API. Currently, both databases
are implemented in MySQL and the database API is
provided by the MySQL Python library. When datasets
scale to large sizes, it is desirable to utilize distributed
database systems such as Apache Hadoop, Apache Hive,
or Apache Spark. The database updating functions in
SnowFort can be substituted by the standard APIs of
these systems. Therefore, the MySQL databases can be
easily replaced by various commonly used distributed
database systems. In addition, SnowFort provides in-
terfaces for scientific computation softwares, such as R
and Matlab, to access data. Such feature will benefit
the applications like sensor placement and optimization
([31], [32]).

Fig. 3. Data processing components in SnowFort

The data processing component in SnowFort is shown
in Fig. 3. Data samples collected by the mote are
conditioned (e.g filtering) and features from the signal are
extracted. Typical features include the raw measurements
themselves, statistical means, variances and autoregres-
sive coefficients as shown in Section V. These data are
then compressed and sent by the mote to the base station.
The base station forwards the decompressed data to the
cloud server. The cloud server stores the data in the raw
data table. Data cleansing algorithms are applied and the
results stored in the second database. Different motes can
have different sampling rates and values might be miss-
ing due to dropped packets. Data cleansing consists of
verifying the integrity of the data with simple consistency
checks and normalizing the data to a canonical form by

filling in missing values and resampling into a common
sampling basis. Finally, application dependent statistical
analysis are applied and results can be visualized in the
web interface. The analysis can be done by batch or real-
time processing. The event logics and the event respones
can be implemented here as well. Statistical processing is
implemented utilizing Python numerical computation and
statistical analysis libraries such as NumPy and SciPy.

D. Web Interface

Fig. 4. Data visualization of accelerometer data via SnowFort’s web
interface. The real-time data from three axes are shown.

SnowFort uses a web interface as the front panel of
the decision support system, unlike earlier systems that
opted for desktop softwares [21], [33]. The system can
be accessed from different locations and a variety of
devices. The web interface supports system configura-
tion, data visualization, and user control. Fig. 4 shows
a screenshot of real-time data visualization of the web
interface. This data visualization panel allows users to
view data of multiple sensors from different base stations
in real time, view historical data with different time
segements, and check each sample value. Also, on this
panel, users are able to select the data sources, set basic
alarm rules, and perform basic filtering. The system
and motes can be remotely managed from the web
interface, including rebooting individual motes, changing
sampling frequencies, setting mote IDs and configuring
the communication system. More configuration details
are discussed in Section IV-B.

IV. FIRMWARE

The SnowFort platform is optimized for infrastructure
and environmental monitoring applications by directly
addressing power consumption, stability and reliability
of the network. This section describes the system design
details to support these goals.
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A. Wireless Communication Scheme

In many current WSN, Zigbee is adopted as the
wireless communication protocol. Zigbee uses IEEE
802.15.4 standard radio as the hardware and carrier sense
multiple access/collision avoidance (CSMA/CA) as the
channel access protocol. Recent literature demonstrates
that packet collision rate of CSMA/CA is high in a
real-time WSN [34]. Additionally, retransmissions due
to collisions consume significant power and result in
unpredictable data reception delay. Medium access pro-
tocols for WSN have been widely investigated (e.g [35]–
[38]) and a comprehensive surveys are presented in [39]
and [40]. Time Division Multiple Access-based (TDMA-
based) schemes have been demonstrated to be among the
most reliable protocols ([10], [41]–[44]).

SnowFort implements a simple TDMA protocol to
coordinate the communication between base station and
deployed motes. The implementation also provides syn-
chronization functionality. The protocol assumes data is
acquired and sent periodically as in most applications in
infrastructure and environmental monitoring. The system
operates as follows. Time is divided into multiple frames
and each frame is further divided into time slots. The
first time slot is used by the base station to broadcast
a beacon frame, which synchronizes clock and sends
commands to the motes. Each mote is assigned a unique
and static time slot. The total number of time slots and
the length of each time slot are fixed during network
configuration. Each mote synchronizes its internal clock
upon reception of the beacon frame. It then turns off
its radio and schedules the next data transmission based
on its assigned time slot. During each time slot only a
single mote transmits information while others remain
silent so the network is collision free. Motes respond to
failure to receive a beacon over a significant period of
time by turning off its radio and remaining silent. After
some pre-specified time the mote turns on the radio to
listen to beacon frames again. The procedure is repeated
until communication is reconnected. A summary of the
TDMA protocol implementation in SnowFort is shown
in Fig. 5. Some features of the implemented scheme are
low data packet loss, high performance synchronization
(within ms accuracy), significant power savings and fixed
and known delay. The low packet loss enables disabling
packet acknowledgement for significant power savings.

Many System-on-Chip (SoC) solutions for WSN are
designed for the IEEE 802.15.4 standard. These chips
also include hardware filters to avoid unnecessary packets
on the band of 2.4 GHz. In order to extend Snow-
Fort’s TDMA protocol to existing hardware platforms,
a customized IEEE 802.15.4 frame header is employed.

Fig. 5. State Machine of SnowFort TDMA Protocol.

In SnowFort, the data frame format, one of the four
supported frame formats in IEEE 802.15.4, is used for
all types of communication. Since the typical maximum
number of motes that can be supported by a single
network is usually less than 128, PAN identification
compression mode and IEEE short address mode are
enabled. Thus, the total length of the MAC header is
9 bytes. The total payload size is up to 118 bytes.

By design, the sensor network in SnowFort is orga-
nized in a star network topology. Each mote can only
communicate with the base station. Therefore, no routing
algorithm is required. The network layer is removed
from the SnowFort communication stack (Fig. 6). The
application layer performs the sensor sampling task.
The sampled data are pushed to the MAC layer for
transmission directly. The MAC address of the mote
serves as the unique identification in the network. When
the mote starts to transmit, sampled data are included
as the payload of the MAC frame. This simplification
reduces execution cycles of motes and saves battery
power. TDMA and the star network topology limit

Fig. 6. Contiki network stack and SnowFort network stack.

the communication range of the motes to the maximum
range of the radio devices, thus limiting the scalability
of the network. SnowFort addresses this limitation by
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adding spatially spread base stations to the network. Base
stations are very low cost so can be freely deployed.
Frequency division multiple access is used to enable all
base stations to operate simultaneously. Base stations
covering adjacent spatial regions are assigned different
RF channels for channel access, following traditional
ideas from 2G cellular networks [45]. The base stations
are sychronized by using GPS or the network time
protocol (NTP).

B. Remote Shell

In Contiki, a command line interface, or shell, is
enabled for executing commands from users. Users can
connect the mote via physical ports, such as USB and
UART, and send commands via standard input. This
feature helps them configure the mote while the system
is operating. However, in most WSN applications, motes
are difficult or costly to access after installation and
deployment. For example, in [10], a WSN for vehicle
classification was deployed. In this network, sensors were
embedded inside the pavement and cannot be accessed
physically after installation. SnowFort implements a re-
mote shell to enable configuration after installation.

The remote shell can receive and execute commands
from users via the wireless connections. Users can utilize
the web interface to send various configuration com-
mands to the network as shown in Section III. The
command is then forwarded to the base station. The
command with parameters is included as the payload of
a beacon frame. The command can be transmitted to one
mote, a set of motes, or all motes. Motes deployed in the
field check the payload of the beacon frame and decide
whether to execute the commands or not. Table I shows
some of the available commands in SnowFort.

TABLE I. COMMANDS SUPPORTED IN SNOWFORT

Command Command Function
nodeid id set mote id to id

txpower power set transmission power to power (0 - 31)
rfchannel channel set radio channel to channel (11 - 26)

timeslot ts set TDMA time slot to ts
reboot reboot mote in 4 seconds

blink num blink LEDs num times

C. Data Compression

In WSN, the radio transmission is one of the most
power consuming components. For the Telosb mote, the
power consumption of transmitting one bit is equivalent
to approximately that of 350 CPU execution cycles.
SnowFort implements a standard lossless data com-
pression algorithm ([46]) to reduce data payloads. The
mechanism is summarized next. Let x[i] denote the

binary representation of the R bit data sample i. The
sample residual is defined as d[i] = x[i] − x[i − 1] (for
d[0], let x[−1] be the quantized value of the median of
the measurement range). The compressor encodes the
residual d[i] based on its probability density distribution.
It outputs a binary sequence b[i] = (c[i], a[i]). Here
c[i] is a Huffman variable length code with n[i] bits
used to represent d[i]. a[i] denotes a truncated binary
representation of d[i] and (p, q) denotes the concatenation
of p and q. When d[i] is 0, n[i] = 0 and a[i] is not
included in b[i]. When d[i] > 0, a[i] = (d[i])|n[i],
where v|n denotes the n least significant bits of v. When
d[i] < 0, a[i] = (d[i] − 1)|n[i]. Compression works
because typically data has temporal correlation and the
residual requires less bits to represent it than the original
data. The decompressor is implemented in the Linux
machine and uses a lookup table to decode messages.
As shown in [46], this method can be applied to highly-
correlated data samples as well.

[46] provides Huffman variable length codes for tem-
perature and relative humidity data. These two types
of data are slowly varying in real applications, and
the corresponding residuals exhibit zero-mean approxi-
mately Gaussian distributions. This is not the case for
accelerometer and strain gauge data, although they are
highly correlated in consecutive samples. Fig. 7 displays
probability density functions of typical accelerometer
and strain gauge data from SHM experiments [25]. The
residuals are not zero mean and not Gaussian. SnowFort
learns a codebook for each type of sensor data based on
the actual observed statistics of residuals, so each type
of data has a unique Huffman variable length codebook.
Compression observed in practice for the mechanism
ranges from none to 64.68%.
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V. STRUCTURAL HEALTH MONITORING

APPLICATION

An important application of wireless infrastructure
monitoring is structural health monitoring (SHM). Sig-
nificant progress in the utilization of WSN in SHM has
been made [4], [25], [47]. The initial focus was on
identifying features of strain gauge and accelerometer
measurements that were sensitive to damage. A feature is
a function extracted from samples of data. Pattern based
damage detection in particular focused on developing
features based on methods such as wavelets and AR
model coefficients [4]. These features are called Damage
Sensitive Features (DSFs). Sequential optimal decision
making utilizing features has recently been developed
that fuses information from multiple sensors [26]. In this
paper we design an optimal distributed decision making
algorithm robust to packet drops and implement it in
SnowFort.

Fig. 8. Summary of the algorithm

The basic damage detection algorithm utilizes a
Bayesian framework. The algorithm contains four steps
as shown in Fig. 8: (1) Collect measurement; (2) Extract
DSFs from measurements; (3) Compute scores (Λn(Y ))
based on the Bayesian framework; (4) Detect damage
by comparing the sequentially computed score and a
threshold. The distributed implementation of the algo-
rithm executes steps (1) and (2) in each mote, and then
computes (3) and (4) in the cloud server. Computation
of DSFs in the motes reduces the data transmission and
computation of the decision rule on the cloud server
maximizes the accuracy of the method. Each step of the
method is detailed next.

The sampled data by each mote is divided into chunks
of size N . An autoregressive model is fit to chunk r
according to

xr[n] =

p∑
k=1

arkxk[n− r] + εr[n], (1)

where ark are the AR coefficients and εr[n] denotes the
residual. The p values ark for k = 1, ..., p form a DSF
vector and is transmitted by the mote to be stored in the
cloud server. To simplify notation, we denote the n-th
DSF an by y[n].

The decision support system (DSS) in the cloud
server computes a Bayesian decision in the following
manner. Suppose damage happens at a random time
λ. The DSF sequence y[n] is identically and indepen-
dently distributed with probability density function (pdf)
f0 before damage and pdf f1 after damage. The test
P (λ ≤ n|y[0], ..., y[n]) ≥ 1 − α ensures that damage
is detected with false alarm probability at most α. The
test can be computed recursively as follows

Λn(Y n) =
P (λ ≤ n|Y n)

P (λ > n|Y n)
(2)

=

n∑
k=0

π(k)
k−1∏
r=1

f0(y[r])
n∏
s=k

f1(y[s])

∞∑
k=n+1

π(k)
n∏
r=1

f0(y[r])

(3)

=

n∑
k=0

π(k)
n∏
r=k

f1(y[r])
f0(y[r])

∞∑
k=n+1

π(k)

(4)

=

(
Πn−1
Πn

Λn−1 +
π(n)

Πn

)
f1(y[n])

f0(y[n])
, (5)

where Y n = {y[t], 1 ≤ t ≤ n}, π(k) denotes the prior
distribution of λ (i.e., π(n) = P (λ = n)), and Πn

denotes the prior complementary cumulative distribution
of λ (i.e., Πn = P (λ > n)). A recursion form of
the score computation is given in (5). When n = 0,
Λ0 = π(0)

1−π(0) . The damage detection test then reduces
to Λn(Y n) ≥ (1 − α)/α. The algorithm generalizes to
multiple motes transmitting DSFs by aggregating them
into a vector y[n] at time n. The corresponding densities
are then defined as joint densities over all DSFs.

In WSN, packets may be lost or experienced interfer-
ence during transmission. Therefore, some DSFs may not
be received. When the score is computed, the time steps
associated with the missing DSFs are disregarded. Let
[a, b] denote the integer set {x|x ∈ N, a ≤ x ≤ b}, i.e.
[a, b] := {a, a+ 1, a+ 2, . . . , b− 1, b}, S denote the set
of the time steps when DSFs are missing, and [a, b] \ S
denote a set contains all the integers in the set [a, b] but
not in S, i.e. {x ∈ [a, b] |x /∈ S}. For example, if time
step 3 and 6 are missing, then S = {3, 6}. Therefore,
the set [2, 7] \ S is {2, 4, 5, 7}. The score computation
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equation (4) becomes to

Λn(Y n) =

∑
k∈[0,n]\S

π(k)
∏

r∈[k,n]\S

f1(y[r])
f0(y[r])

∞∑
k=n+1

π(k)

. (6)

In case multiple sensors are utilized, the same effect is
obtained by integrating the joint distributions f0(y) and
f1(y) along the dimensions of missing samples.

VI. EXPERIMENTS AND RESULTS

We evaluate the performance of SnowFort in two
different ways. First, we measure the system performance
with respect to communications, power consumption and
synchornization performacne in particular. Second, we
measure the performance of the system for damage
detection in SHM we proposed.

A. System Performance

1) Setup: The network performance, power consump-
tion and synchronization performance of SnowFort are
evaluated on both an emulator and a physical hardware
platform. Telosb motes are used in both tests.

For emulating a WSN, we use the COOJA emula-
tor, which emulatues the hardware device and runs the
firmware program with real device performance [48].
COOJA supports different hardware platforms with fac-
tory configurations and parameters and various realistic
wireless communication mediums. It allows rapidly pro-
totyping changes to the code of a large scale emulated
network. As dissuced in [27], an emulation platform can
reduce the development time of WSN. The emulation
can be utilized by other SnowFort users as well. We
set up a network with 16 Telosb motes, as shown in
Fig. 9. Mote 1 serves as a base station. The other
15 motes are used for data collection and distributed
in an area of 150 × 130 square meters. The emulation
and experiment configuration is summarized in Table. II.
The power profile tool Powertrace [49] is used to profile

TABLE II. SYSTEM PERFORMANCE EMULATION
CONFIGURATION

Number of time slots 16
Time slot length 6.25 ms
Wireless medium multi-path channel

Transmission power 0 dBm

the power consumption of both the base station and
data collection motes. The packet sequence number is
used to trace missing packets. When the base station
detects the discontinuity of packet sequence numbers, a
missing packet is declared. All raw data are transmitted

Fig. 9. Emulation Topology. Mote 1 is a base station.

without compression. The size of the data frame payload
is maximized. This setup helps us to explore a scenario
with maximum power consumption.

For the real world experiment, the system setup and
parameters are as same as the emulation. In addition,
each Telosb mote is connected with a MPU 6050 I2C
sensor, which has one three-axis accelerometer, one
three-axis gyroscope, and one temperature sensor. The
I2C sensor has an embedded anti-aliasing filter with
configurable cut-off frequencies. The mote is powered by
two Alkaline AA batteries with the supply voltage of 3 V.
The I2C sensor is powered by the mote via pin Vcc with
the supply voltage of 2.7 V. Some pinout modifications
are necessary to support the sensors.

2) Power Consumption: For Telosb mote, there are
four operation states: CPU active, CPU inactive, radio
TX, and radio RX [50]. The power consumption of each
status is summarized in Table III. (7) can be used to

TABLE III. CURRENT CONSUMPTION OF TELOSB MOTE [50]
AND MPU 6050 I2C SENSOR [30].

Operation State Current Consumption Current Consumption
(normal) (max)

CPU active 1.8 mA 2.4 mA
CPU inactive 5.1 µA 21 µA

radio TX 19.5 mA 21 mA
radio RX 21.8 mA 23 mA
gyroscope 3.6 mA —

accelerometer 500 µA —
gyroscope and 3.8 mA —
accelerometer

evaluate power consumption of the mote,

Etotal = Eactive + Einactive + ETX + ERX + ESensor

= Vsupply × (IactiveTactive +

IinactiveTinactive + ITXTTX +
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IRXTRX) + VSensorISensorTSensor (7)

= TtotalPtotal (8)

= Ttotal × (Pactive + Pinactive +

PTX + PRX + PSensor), (9)

where ES , PS , and IS denote the energy consumption,
the power, and the current consumption, in the operation
status S respectively, Vsupply denotes the supply voltage,
which typically is 3 volts, VSensor denotes the supply
voltage of sensor via the pin of mote, and TS denotes the
time staying in the operation status S. The operation sta-
tus S includes active status, inactive status, transmission
(TX) status, receipt (RX) status and sensor. In addition,
Ttotal = Tactive + Tinactive. The power consumption of
both I2C and ADC sensors are represented as ESensor in
(7). For sensors, the operation time TSensor is Ttotal.

Fig. 10 shows measurements of power consumption of
both the base station and the mote in COOJA emulation
and the experiment with physical hardware devices. The
power of each operation status is shown as well. All
experiments are conducted for 10 minutes and measure-
ments of power consumption data are collected every one
second. We calculate the total power consumption over
10 minutes and then compute Ptotal by using (8).

In the emulation, for the base station, the time con-
sumed in active status, inactive status, TX status, and
RX status is 63.4 s, 556.6 s 1.09 s, and 618.91 s respec-
tively. According to (7) and Table. III, the total power
consumption of the base station wireless transceiver is
40.891 jours. Since the total time length for measurement
is 620 seconds, according to (8), the power is 65.94 mW.
For motes, the average time consumed of each mote in
each status is 47.306 s, 572.694 s, 2.133 s, and 6.652
s respectively. The average total power consumption of
each mote is 824.013 mJ and the average power of each
mote is 1.33 mW. The base station is typically setup
with access to a regular power supply such as a solar
panel or outlet. A standard Alkaline AA battery is usually
3.9 Wh, which is equivalent to 14040 J. Hence, with
two AA batteries, the mote in SnowFort can operate for
244 days without battery replacement. The transmission
power could be set to less than the maximum to extend
lifetime further.

In the experiment with physical hardware devices,
the power of the base station wireless transceiver is
65.78 mW and the mote without any sensors connected
consumes 1.24 mW. When the mote is set to utilize the
accelerometer alone it consumes 2.59 mW (lifetime 125
days) and when utilizing both accelerometer and gyro
consumption is 11.50 mW (lifetime 28 days).

SnowFort saves power consumption significantly com-
pared with other existing systems. In [51], the author
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Fig. 10. Operating power of mote. The upper plot shows the power
of the base station. The lower plot shows the power of the mote.

proposes a WSN to monitor the ambient vibration of the
Golden Gate Bridge. The sensor used in this monitor-
ing system is powered by three high capacity lithium
batteries. The estimated lifetime is 23 days. By using
the same battery type, the SnowFort system can operate
over 3 years. In [52], the WISAN node also has a
MSP430 microprocessor and a CC2420 radio transceiver
but has no sensor. It has a peak power consumption of
75 mW, which is larger than the power consumption
of our system by a factor of 60. Several power saving
optimizations are introduced in [52].

A recently proposed wireless sensing unit with an
accelerometer has a power consumption of 1.73 mW
[33]. The custom accelerometer in their test has power
consumption of 0.35 mW. If this accelerometer was used
in place of the MPU 6050 sensor, the mote in SnowFort
would have total consumption of 1.59 mW. The test
in [33] is done with a single sensor, but since their
system uses standard CSMA/CA, significantly higher
power consumption can be expected.

3) Network Performance: We use (10) to compute the
packet drop rate (PDR),

PDR =

(
1− Number of packets received

Number of packets transmitted

)
×100%.

(10)
For the COOJA emulation, the PDR is 0.012%. For
the real-world experiment, the PDR is 0.959%. In [34],
authors test a network with 10 motes utilizing a standard
CSMA/CA protocol with IEEE 802.15.4 radios. The
average reported packet delay is 55 ms. For each packet,
the expected transmission time is 8.7 ms. The PDR for
the CSMA/CA scheme is approximately 86.34%.
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The SnowFort system can support up to 54 motes at
32Hz in the experimental configuration. In this configu-
ration, the PDR is 0.0154% in COOJA emulation. The
limitation is the processing time for each packet required
at the base station. Additional low cost base stations can
be added to support additional motes.

4) Sychronization Performance: The time synchro-
nization accuracy is tested by sampling a sinusoid signal
on four motes associated with two different base stations.
The time delay is computed from the differences between
the phase offset estimates of any two motes, i.e.

∆ij =
|φi − φj |

2πf0
, (11)

where f0 denotes the frequency of the sinusoid signal.
By repeating the experiments multiple times, the average
time delay is 98µs, which meets the 1ms minimum
requirement of SHM, as suggested by [53]. For applica-
tions require higher accuracy, the present synchronization
algorithm can be modified to the ones in [54] and [55].

B. Structural Health Monitoring Experiment

1) Setup: Data collected from a shake table exper-
iment, which is conducted at the State University of
New York at Buffalo [26], [56], are used to verify the
performance of both SnowFort and the SHM damage
detection algorithm. The acceleration data were recorded
from each floor and the roof of a four-story frame. 5000
samples of data were recorded for earthquakes of three
intensity levels: service level earthquake (SLE), design
level earthquake (DLE) and collapse level earthquake
(CLE). The samples collected during SLE and DLE are
regarded as pre-damage state and at CLE as post-damage.

The data from the experiment is utilized to seed each
mote to emulate the data collection and decision process.
In the experiment, five Telosb motes are used to collect
acceleration data and communicate with a common base
station. The time slot interval is 0.8s. Signals collected
by ADCs of motes are continuous time signals that are
reconstructed by the discrete time data collected in the
original shake table experiment. The analog signals are
filtered by a analog anti-aliasing filter before sampling.
Therefore, one mote virtually collects data from one
floor or the roof of the 4-story structure. The sampling
frequency of ADCs remain the same, which is fs = 128
Hz. Motes fit a 3rd order AR model with chunked data.
The chunk size is set to N = 100. The DSF is the first
AR coefficient. During each time slot, 5 DSFs are sent.
Data decompression is performed at the base station after
receiving DSFs. DSFs are then forwarded to the cloud
server via the Internet. After receiving DSFs, the cloud

server computes the score and performs threshold tests,
as shown in Fig. 8.

2) Data Compression Performance: The data com-
pression ratio (CR) is computed as in (12).

CR =

(
1− Total number of bits transmitted

Total number of bits sampled

)
×100%. (12)

Fig. 11 shows CRs of each floor and the roof (5th floor).
The overall average compression ratio is 68.55%. The
compression system directly encodes the DSF which is
highly correlated and follows an approximately Gaussian
distribution [25], [26]. Therefore, there is no need to
compute DSF residuals before compression.
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Fig. 11. Data compression performance on DSFs

3) Detection Algorithm Performance: In the validation
experiment a total of 50 DSFs are generated for each type
of earthquake signal on each floor. The pre-damage and
post-damage distributions are assumed to be Gaussian
distributions. The means and variances of f0 and f1 are
computed based on pre-damage and post-damage DSFs
respectively. The probability of false alarm α is set to
10−6. When the score Λn is larger than the threshold
τ = (1− α)/α, a damage is declared.

The upper plot of Fig. 12 shows scores of each floor
and the roof. The horizontal dash line is the threshold.
When the score surpasses the dash line, a damage is
declared. In this experiment, the damage occurs on the
roof and the true damage starts at n = 101. The sensors
on the 2nd floor, 3rd floor, 4th floor, and the roof detect
the roof damage at n = 110, n = 105, n = 108,
and n = 103, respectively. The results are consistent
with those presented for the centralized and complete
data algorithm in [26]. The SnowFort monitoring system
works as expected.
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The lower plot of Fig. 12 shows scores of the algorithm
with packet loss. The acceleration signal from the roof
is used as the testing signal. For the first test case, time
steps from 40 to 60 are dropped. It is a pre-damage case.
For the second test case, time steps from 90 to 110 are
dropped. It is a damage transition case. The third test
case is the post-damage case. DSF with time steps from
105 to 120 are missing. True damage starts at n = 101
analogous to the prior setup. In the benchmark scenario
without packet loss, the fault is detected at n = 103. For
the first case and the third case, faults are also detected
at n = 103. For the second case, the fault is detected at
n = 114, which is mostly introduced by missing DSFs.
The detection delay caused by the detection algorithm is
3, which only needs one more DSF than the benchmark
signal.

Fig. 13 demonstrates the performance of the detection
algorithm with packet loss. The signal collected from
the roof is used here. Expected detection delays are
computed over 1000 realizations with PDR from 0.1%
to 50%. As shown in Fig. 13, when PDR is small,
the expected detection delay is 2. When PDR grows
to 50%, the algorithm can still detect the damage with
an expected delay of 3.8 time steps. Other floors have
similar performances.

VII. SUMMARY AND DISCUSSION

In this paper, SnowFort, a new WSN for infrastruc-
ture and environmental monitoring, is presented. This
system introduces a new architecture for the integration
of both a WSN and a decision support system, with
real-time visualization, analytics, and interaction over a
web interface. The optimization of the communication
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Fig. 13. Probability of packet missing v.s. expected detection delay

scheme, TDMA, not only improves the reliability and
scalability of the network but also extends the lifetime
of motes: when powered just by two AA batteries, they
can persist for 244 days without sensing and 125 days
with accelerometers and temperature sensors. The power
comsumption is reduced by minimizing radio on time in
TDMA, transmitting the compressed data, and further de-
creased by sending the features rather than the raw data in
SHM experiment. A standard and RESTful API for data
posting and retrieval makes the data visualization and
analytical tools of SnowFort available to other systems.
When integrated into SHM systems, SnowFort offers a
low-power and reliable platform for detecting damage
through a quantitative and Bayesian framework. The
work for data processing is embeddable into each sensor
mote, allowing for more efficient paths of communication
within a distributed damage detection framework. Mini-
mizing the effect of packet loss is also explored, aided
by a decision mechanism that incorporates uncertainty,
which has been validated through experiments.
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