
Phase and Frequency Estimation:

High-Accuracy and Low-Complexity Techniques

by

Yizheng Liao

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Master of Science
in

Electrical and Computer Engineering
by

May 2011

APPROVED:

Professor D. Richard Brown III, Major Advisor

Professor John A. McNeill, Committee Member

Professor Andrew G. Klein, Committee Member

Abstract

The estimation of the frequency and phase of a complex exponential in additive white

Gaussian noise (AWGN) is a fundamental and well-studied problem in signal processing

and communications. A variety of approaches to this problem, distinguished primarily

by estimation accuracy, computational complexity, and processing latency, have been de-

veloped. One class of approaches is based on the Fast Fourier Transform (FFT) due to

its connections with the maximum likelihood estimator (MLE) of frequency. This thesis

compares several FFT-based approaches to the MLE in terms of their estimation accuracy

and computational complexity. While FFT-based frequency estimation tends to be very

accurate, the computational complexity of the FFT and the latency associated with per-

forming these computations after the entire signal has been received can be prohibitive in

some scenarios. Another class of approaches that addresses some of these shortcomings is

based on linear regression of samples of the instantaneous phase of the observation. Linear-

regression-based techniques have been shown to be very accurate at moderate to high signal

to noise ratios and have the additional benefit of low computational complexity and low

latency due to the fact that the processing can be performed as the samples arrive. These

techniques, however, typically require the computation of four-quadrant arctangents, which

must be approximated to retain low computational complexity. This thesis proposes a new

frequency and phase estimator based on simple estimates of the zero-crossing times of the

observation. An advantage of this approach is that it does not require arctangent calcu-

lations. Simulation results show that the zero-crossing frequency and phase estimator can

provide high estimation accuracy, low computational complexity, and low processing la-

tency, making it suitable for real-time applications. Accordingly, this thesis also presents a

real-time implementation of the zero-crossing frequency and phase estimator in the context

of a time-slotted round-trip carrier synchronization system for distributed beamforming.

The experimental results show this approach can outperform a Phase Locked Loop (PLL)

implementation of the same distributed beamforming system.

iii

Acknowledgements

First of all, I would like to express my deep and sincere gratitude to my advisor, Pro-

fessor D. Richard Brown, for providing me this great research opportunity, for giving me

the professional and insightful comments and suggestions on my research work, and for

encouraging and motivating me to move forward on the research. As an advisor, he taught

me how to start a research project, and how to face the challenges during the research work.

The research I carried out under Professor Brown has deeply motivated me to pursue my

Ph.D degree in the Electrical and Computer Engineering, and to become a faculty member

in the future.

Besides my advisor, I would also like to express gratitude to my committee members:

Professor John A. McNeill and Professor Andrew G. Klein. Thank you for reviewing my

thesis, participating in my defence, and for asking me challenging questions and giving me

professional comments on my thesis.

Most importantly, I want to say thanks to my parents. Without your encouragement

and support I would not have been able to come to the United States to study and be where

I am today. I am forever in debt to your for you unconditional love!

I would also like to thank my fellow spinlab members, Min Ni and Joshua Bacon. Thank

you for taking the time to discuss my research and help me with the experiments.

I also want to say thanks to all of my friends at WPI. Because of you, the last three

years at WPI have provided me with some of my most memorable moments in life.

Last, but not least, I am grateful for the generous support of Texas Instruments for

donating the equipment, and for the financial support of National Science Foundation.

iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Background 4

2.1 Cramer-Rao Lower Bound . 5
2.2 FFT-Based Maximum Likelihood Estimation 6
2.3 Linear-Regression-Based Maximum Likelihood Estimation 7

3 FFT-Based Phase and Frequency Estimation 11

3.1 Approximate Maximum Likelihood Estimation using Fast Fourier Transform
and No Post-Processing . 13

3.2 Approximate Maximum Likelihood Estimation using FFT and Quadratic
Interpolation . 18

3.3 Approximate Maximum Likelihood Estimation using FFT and Secant Method 22
3.4 Approximate Maximum Likelihood Estimation using FFT and Newton’s Method 31

3.4.1 Comparison of the FFT-Secant MLE and the FFT-Newton MLE . . 34
3.5 Approximate Maximum Likelihood Estimation using FFT and Bisection Method 37
3.6 Conclusion . 43

4 Zero Crossing Phase and Frequency Estimation 45

4.1 Algorithm . 46
4.1.1 Zero-Crossing Phase and Frequency Estimator 46
4.1.2 Sequential Implementation . 48

4.2 Computational Complexity . 49
4.3 Numerical Results and Discussion . 50
4.4 Conclusion . 54

5 Zero Crossing Estimator Refinements 55

5.1 Zero Crossing Estimator using Local Linear Regression for Zero-crossings . 55
5.1.1 Numerical Results and Discussion 59

5.2 Zero Crossing Estimator using Pre-Filtered Observation 59

v

5.2.1 Numerical Results and Discussion 59
5.3 Zero Crossing Estimator using Non-Linear Iterative Method 62

5.3.1 Numerical Results and Discussion 63
5.4 Conclusion . 66

6 A Software-Defined-Radio Implementation of Time-Slotted Round-Trip

Carrier Synchronization for Distributed Beamforming via Zero-Crossing

Estimation 68

6.1 Two-Source Synchronization . 70
6.2 Experimental Methodology for Two-Source Test in Wire-Connected Channel 71
6.3 Zero-Crossing Estimator Implemented on Source Node 74

6.3.1 Implementation of the Round-Trip Time Table 74
6.3.2 Implementation of Zero-Crossing Estimator 76
6.3.3 Implementation of Holdover . 79
6.3.4 Implementation of FIR Filter . 80

6.4 Data Analysis Methodology . 81
6.5 Experimental Results . 82

7 Conclusion 83

A The Specification of Computer and Matlab for Simulation 85

A.1 The Specification of Computer for Simulation 85
A.2 The Specification of Matlab Software for Simulation 85

B Source Code of the TMS320C6713 Source Node in the Two-Source Sys-

tem 86

C Approximate Maximum Likelihood Estimation using Secant Method Mat-

lab Source Code 110

C.1 Main Function . 110
C.2 Function of Implementing the FFT-Secant MLE 112
C.3 Function of Computing A(ω) . 114
C.4 Function of Computing F

′

(ω) . 114
C.5 Function of Phase Unwrapping . 116

Bibliography 117

vi

List of Figures

3.1 Application of Maximum Likelihood Estimation. 12
3.2 FFT MLE example with M = 212. 15
3.3 Mean squared frequency estimation error for complex observation of FFT

MLE. 16
3.4 Mean squared phase estimation error for complex observation of FFT MLE. 16
3.5 Total execution time for 500 complex observations of FFT MLE. 17
3.6 FFT-Quad MLE Example. 19
3.7 Mean squared frequency estimation error for complex observation of FFT-

Quad MLE. 20
3.8 Mean squared phase estimation error for complex observation of FFT-Quad

MLE. 21
3.9 The Secant Method example with two iterations. 23
3.10 FFT-Secant MLE example. 26
3.11 Mean squared frequency estimation error for complex signal of FFT-Secant

MLE with ε = 10−4. 27
3.12 Mean squared phase estimation error for complex signal of FFT-Secant MLE

with ε = 10−4. 28
3.13 Mean squared frequency estimation error for complex signal of FFT-Secant

MLE with ε = 10−6. 29
3.14 Mean squared phase estimation error for complex signal of FFT-Secant MLE

with ε = 10−6. 30
3.15 FFT-Newton MLE example. 33
3.16 Mean squared frequency estimation error for complex signal of FFT-Newton

MLE with ε = 10−4. 34
3.17 Mean squared phase estimation error for complex signal of FFT-Newton MLE

with ε = 10−4. 35
3.18 Mean squared frequency estimation error for complex signal of FFT-bisection

MLE with ε = 10−4. 39
3.19 Mean squared phase estimation error for complex signal of FFT-bisection

MLE with ε = 10−4. 40
3.20 Mean squared frequency estimation error for complex signal of FFT-bisection

MLE with ε = 10−6. 41

vii

3.21 Mean squared frequency estimation error for complex signal of FFT-bisection
MLE with ε = 10−8. 42

4.1 State machine implementation of the zero crossing detector. 47
4.2 Noisy observation with α = 0.5. 47
4.3 Mean squared frequency estimation error of ZC estimator with α = 0.4. . . 51
4.4 Mean squared phase estimation error of ZC estimator with α = 0.4. 52
4.5 Mean squared frequency estimation error of ZC estimator with α = 0.2. . . 53
4.6 Mean squared phase estimation error of ZC estimator with α = 0.2. 53

5.1 Mean squared frequency estimation error of ZC estimator via local linear
interpolation with α = 0.4. 57

5.2 Mean squared phase estimation error of ZC estimator via local linear inter-
polation with α = 0.4. 58

5.3 Mean squared frequency estimation error of ZC estimator with α = 0.4 and
a 64th order FIR filter. 60

5.4 Mean squared phase estimation error of ZC estimator with α = 0.4 and a
64th order FIR filter. 61

5.5 Mean squared frequency estimation error of ZC estimator via the Secant
Method with α = 0.4. 64

5.6 Mean squared phase estimation error of ZC estimator via the Secant Method
with α = 0.4. 65

6.1 Time-slotted round-trip carrier synchronization system with two source nodes. 69
6.2 Implementation block diagram of the two-source time-slotted round-trip car-

rier synchronization system where the blue and green lines each represents a
different signal wired path . 72

6.3 Effect of multipath on ZC estimation and holdover. 81

viii

List of Tables

4.1 Phase of a complex exponential at zero crossing 46
4.2 Computational Complexity of Tretter, Kay, and zero-crossing estimators . . 50

6.1 Two-source round-trip synchronization protocol timing. After detection of
the primary beacon, each node keeps time using its sample clock running at
16 kHz. 73

6.2 Experimental results of two-source wired-channel tests. Each experiment
consisted of 100 distributed beamforming tests. 82

A.1 The Specification of simulation computer 85
A.2 The Specification of Matlab . 85

1

Chapter 1

Introduction

The estimation of the frequency and phase of a complex exponential in additive white

Gaussian noise (AWGN) is a fundamental and well-studied problem in signal processing

and communications. Its numerous applications include carrier recovery in a communi-

cation system [1], determination of the object position in radar and sonar systems [2, 3],

estimation of the heart rate of a fetus in biomedicine [4], and carrier synchronization in

a distributed beamforming system [5]. Regardless of the application, poor estimation can

lead to disastrous results. For example, in communication system, with the poor carrier

frequency estimate, the down-converter may not be able to demodulate the passband signal

to baseband [1]. In the smart antenna system and speech processing system, a poor phase

estimator may cause the system to fail to identify the direction of arrival of the signal [6, 7].

Nowadays, a variety of approaches to the frequency and phase estimation problem,

distinguished primarily by estimation accuracy, computational complexity, and process-

ing latency, have been developed. One class of approaches is based on the Fast Fourier

Transform (FFT) due to its connections with the maximum likelihood estimation (MLE)

of frequency. The MLE has very high accuracy because it achieves the Cramer-Rao Lower

Bound (CRLB), which is the minimum possible error for the unbiased estimator, over a

wide range of Signal-to-Noise Ratio (SNR) values. Several FFT-based MLEs have been

proposed in [8], [9], [10], [11], and [12]. However, none of the literature compares the com-

putational complexity of each approach. Therefore, in this thesis, we compare the accuracy

2

and the computational complexity of the approach given in [8] and its refinements. The

results show that by using the root-finding algorithms the accuracy of the FFT-based MLE

is improved significantly. Also, the computational complexity is reduced by avoiding the

FFT with a large number of points. Although the FFT-based MLE can provide a high

accuracy of estimation, the latency can be prohibitive in some scenarios because the FFT

can only be performed after receiving the entire signal.

Another class of approaches that addresses the shortcomings of the FFT-based MLEs

is based on linear regression of samples of the instantaneous phase of the observation.

Several approaches have been proposed in [13], [14], [15], and [16]. Linear-regression-based

techniques have been shown to be very accurate at moderate to high SNRs. In addition,

some of the approaches have been shown to have low computational complexity and low

latency due to the fact that the processing can be performed on a sample-by-sample basis.

These techniques, however, typically require the computation of four-quadrant arctangents,

which must be approximated to retain low computational complexity. In this thesis, we

propose a new frequency and phase estimator called the zero-crossing phase and frequency

estimator. The proposed estimator is based on the simple estimates of the zero-crossing

times of the observation. Compared with the estimators presented in [13] and [14], our

approach has similar performance, but lower computational complexity. Our proposed

estimator avoids the arctangent operation by using the instantaneous phase of each zero

crossing, which is known. In addition, rather than computing the instantaneous phase

of each received sample, our approach only computes the instantaneous phase of the zero

crossings. Therefore, less operations are required. Furthermore, our approach has low

latency because it can be implemented in a sequential way. Due to its high accuracy, low

computational complexity, and low processing latency, the proposed zero-crossing estimator

is suitable for real-time applications.

To demonstrate the real-time applicability of the zero-crossing phase and frequency

estimator, this thesis also presents a real-time implementation of the zero-crossing phase

and frequency estimator in the context of a distributed beamforming system utilizing the

time-slotted round-trip carrier synchronization protocol. Compared with the experimental

results of the same distributed beamforming system implemented via a hybrid Phase Locked

3

Loop (PLL) in [17], our approach offers less signal power lost at the destination. Also, our

experimental results are more consistent.

The rest of this thesis is organized as follows. Chapter 2 introduces the Cramer-Rao

Lower Bound and gives a review of FFT-based and linear-regression-based estimations.

Chapter 3 discusses the FFT-based maximum likelihood estimation and its refinements by

using quadratic interpolation and root-finding algorithms. For each estimator in Chapter 3,

we provide numerical results as a function of SNR. In addition, the computational complex-

ity is discussed for each estimator. Chapter 4 proposes the algorithm of the Zero-Crossing

phase and frequency estimator, and also compares numerical results with Tretter’s estimator

and Kay’s estimator. Chapter 5 presents three refinements of the proposed ZC estimator.

Each refinement is analysed numerically, and the performance is compared with the fun-

damental zero-crossing estimator, Tretter’s estimator, and Kay’s estimator. In Chapter 6,

the zero crossing estimator is implemented in a time-slotted round-trip carrier synchroniza-

tion distributed beamforming system by software-defined-radio in a wire-connected chan-

nel. Finally, the software implementation of the zero crossing algorithm is discussed and

the methodology of the experiment is given. This thesis then concludes with experimental

results from this chapter.

4

Chapter 2

Background

In the problem of estimating the unknown parameters of a single tone in noise from the

discrete-time observations, we consider the complex-valued received signal

z[n] = b0 exp(j(ω0nT + θ0)) + w[n] (2.1)

for n = n0, . . . , n0 + N − 1, where frequency ω0, ω0 ≥ 0, amplitude b0, and phase offset

θ0, −π ≤ θ0 < π, are unknown constants. The variable T denotes the sampling period, n0

denotes the index of the first sample, and w[n] is a zero-mean proper complex Gaussian

random variable with var {<(w[n])} = var {=(w[n])} = σ2. The covariance of <(w[n]) and
=(w[n]) is zero. Therefore, we assume that w[n] are independent and identically distributed

(i.i.d) for n = n0, n0 + 1, . . . , n0 + N − 1. The Signal-to-Noise ratio (SNR) is defined as

SNR :=
b20
2σ2 .

The N -sample observation of (2.1) is provided as an input to a phase and frequency

estimator. The phase and frequency estimates generated by the estimators are denoted as

θ̂ and ω̂ respectively. The resulting phase and frequency errors are denoted as θ̄ := θ0 − θ̂

and ω̄ := ω0 − ω̂, respectively.

5

2.1 Cramer-Rao Lower Bound

In this paper, we use the Cramer-Rao Lower Bound (CRLB) as a benchmark for the

performance of an estimator. An unbiased estimator that achieves the CRLB is said to be

“efficient” , in the sense that it achieves the best possible performance in the context of

a squared-error cost. The Fisher information matrix for the CRLB for complex signal is

[8, 12]

J(β) :=
1

σ2

b20T
2(n2

0N + 2n2
0P +Q) 0 b20T (n0N + P)

0 N 0

b20T (n0N + P) 0 b20N

(2.2)

where β = [ω0, b0, θ0]
T ,

P :=

N−1
∑

n=0

n =
N(N − 1)

2
(2.3)

Q :=
N−1
∑

n=0

n2 =
N(N − 1)(2N − 1)

6
and

β := [ω0, b0, θ0]
T . (2.4)

When all three parameters are unknown, after inverting all the variations of the information

matrix J, the variances obtain the following set of bounds:

var{b̂0} ≥ σ2

N
(2.5)

var{ω̂0} ≥ 12σ2

b20T
2N(N2 − 1)

(2.6)

var{θ̂0} ≥ 12σ2(n2
0N + 2n0P +Q)

b20N
2(N2 − 1)

(2.7)

6

The CRLB for the covariance of the frequency and phase errors of a complex exponential

in AWGN when both of the phase and frequency are unknown is given as [8]

cov
{

[

ω̄, θ̄
]T
}

≥ σ2

b20

N
T 2(NP−Q2)

−(Nn0+P)
T (NP−Q2)

−(Nn0+P)
T (NP−Q2)

Nn2
0+2n0P+Q
(NP−Q2)

.

 (2.8)

where the notation A ≥ B means that A−B is positive semi-definite. In order to isolate the

phase and frequency errors, we choose the first sample index n0 = −P/N , the off-diagonal

terms of (2.8) can be set to zero and the frequency and phase estimation performance of

each algorithm can be evaluated independently.

2.2 FFT-Based Maximum Likelihood Estimation

The maximum likelihood (ML) frequency estimator given the observation (2.1) is [8]

ω̂ML = argmax
ω∈Ω

|A(ω)| (2.9)

where Ω ⊆ [0,∞), and

A(ω) =
1

N

N−1
∑

n=0

z[n] exp(−jnωT). (2.10)

After finding ω̂ML, the phase estimate is computed by using the follow equation

θ̂ML = ∠ {exp(−jω̂MLt0)A(ω̂ML)} (2.11)

where t0 := n0T . The amplitude is estimated by using

b̂0ML = |A(ω̂ML)| (2.12)

A well-known numerical method to locate ω̂ML is given in [8]. In order to locate ω̂ML,

they use the discrete Fourier transform (DFT) to find ω which approximately maximizes

|A(ω)|. In fact, the M -point DFT is a sampled version of A(ω) at frequencies ω = 2πk
MT for

k := 0, ...,M − 1. Usually, the Fast Fourier transform (FFT) is used to compute A(2πkMT)

7

for k := 0, ...,M − 1. Then they select the index k at which A(2πkMT) attains its maximum

magnitude. In other words, (2.9) is maximized over a discrete set rather than Ω. Then the

frequency estimate can be computed as

ω̂Rife =
2πk

MT
. (2.13)

After finding ω̂Rife, we can use (2.11) and (2.12) to find the phase and amplitude estimates.

As presented in [8], when none of the frequency, phase, and amplitude is known, the

proposed estimator computes the frequency estimate as first. Then the phase and amplitude

estimates are computed based on the frequency estimate. Therefore, the accuracy of the

frequency estimator is very important. With a poor frequency estimator, it is difficult to

have a good phase and amplitude estimates. Thus, in [8], Rife and Boorstyn proposed

a two-part search routine. The first part is called the coarse search which uses the FFT

method discussed above to locate the ω̂. The second part locates the local maximum closet

to the value of ω picked out by the first part. This part is called the fine search. If

the frequency estimate computed by coarse search is accurate, this procedure will locate

the global maximum of |A(ω)| and thus the best approximate ML estimates. In [8], the

Secant method is used for the fine search. However, few details are provided about how to

implement it. In Section 3.3, a detailed study is provided about using the FFT and the

Secant Method to implement the approximate maximum likelihood estimation.

2.3 Linear-Regression-Based Maximum Likelihood Estima-

tion

In the previous section, the discussed maximum likelihood estimator uses the FFT to

locate the estimate ω̂ML approximately, which maximizes the likelihood function |A(ω)|. For
the proposed method in [8], the estimator needs to process after receiving all the samples.

It is not an efficient algorithm for the applications require low latency. In addition, the

computational complexity of the FFT isO(M logM), whereM is the number of FFT points.

This computation of the FFT will increase the latency of estimation as well. Nowadays,

8

more and more applications require a low-latency algorithm for computation. One of the

well-known solutions is the linear-regression-based maximum likelihood estimation. For this

category of estimation, the estimators find the phase of the received observation, i.e.

φ[n] := ∠z[n] = ω0nT + θ0, (2.14)

and then apply the linear regression to {φ[n]|n = n0+0, n0+1, . . . n0+N−1} for estimating

ω̂ and θ̂. Most of the proposed algorithms can attain the CRLB over a wide range of SNR

values.

Tretter is the first person to present the idea of using phase samples to estimate frequency

and phase [13]. The observed signal in (2.1) can be expressed as

z[n] = {1 + v[n]} b0 exp(j(w0nT + θ0)) (2.15)

where

v[n] =
1

b0
w[n] exp(−j(w0nT + θ0)). (2.16)

Let v[n] = vR[n] + jvI [n], then

1 + v[n] =
{

{1 + vR[n]}2 + v2I [n]
}1/2

× exp

{

j arctan
vI [n]

1 + vR[n]

}

(2.17)

For high SNR, when 1 � vR[n] and 1 � vI [n], we can write

{(1 + v2R[n])
2 + v2I [n]}1/2 ' 1 (2.18)

and

1 + v[n] ' exp {j arctan vI [n]} ' {jvI [n]} . (2.19)

Hence, 1 + v[n] ' jvI [n].

9

This approximation can then be plugged back into (2.15) to write

z[n] ' b0 exp {j(w0nT + θ0 + vI [n])} . (2.20)

All the required information is contained in the phase angle of (2.20)

φ[n] := ω0nT + θ0 + vI [n]. (2.21)

(2.21) can be computed by applying a phase unwrapping algorithm and using an arctangent

operation, i.e. φ[n] = unwrap{arctan{z[n]}}. The parameters ω̂tretter and θ̂tretter can be

calculated by least squares (LS) regression, i.e.

ω̂tretter

θ̂tretter

 =
12

T 2N2(N2 − 1)

×

N −T (Nn0 + P)

−T (Nn0 + P) T 2(Nn2
0 + 2n0P +Q)

×
[

n0+N−1
∑

n=n0

nTφ(n)
n0+N−1
∑

n=n0

φ(n)

]

. (2.22)

As discussed in [13], Tretter’s estimator can only achieve the CRLB as a sufficiently high

SNR.

Compared with the Rife’s MLE, Tretter’s estimator does not require to use the FFT.

Instead, linear regression is applied to the phase of each sample. Therefore, the computa-

tional complexity is reduced. In addition, based on (2.22), the proposed estimator can be

implemented in sequence. This advantage makes it possible to implement Tretter’s estima-

tor with low latency. However, the phase unwrapping is not an efficient operation, which

may increase the computational complexity. In addition, the phase unwrapping algorithm

may fail at low SNR [14].

In [14], Kay proposed a similar algorithm which still uses the phase of each sample for

estimation, but avoids the phase unwrapping by using the differenced phase of two adjacent

10

points. From (2.20) and (2.21), we have

∆[n+ 1] = ∠z[n+ 1]− ∠z[n]

= φ[n+ 1]− φ[n]

= ω0T + vI [n+ 1]− vI [n] (2.23)

When SNR is high, we know 1 � vI [n]. Therefore, vI [n + 1] − vI [n] ' 0. Thus, as long as

SNR is high enough, we can apply the least square regression again to (2.23) to estimate ω̂.

In [14], an alternative approach is introduced. Since ∠z[n+1]−∠z[n] = ∠ {z[n+ 1]z∗[n]},
in addition the noise vI [n] is coloured noise, the standard weighted least-squares theory [18]

leads to a weighted average estimate, given by

ω̂kay =
1

(N − 1)T

N−2
∑

n=0

p[n] arg {z∗[n]z[n + 1]} (2.24)

where

p[n] =
6(n + 1) [N − (n+ 1)]

N(N2 − 1)
. (2.25)

As shown in [14], Kay’s estimator can only attain the CRLB at high SNR. The unweighed

Kay’s estimator is very close to the CRLB but not attain it. In addition, compared with

the FFT-based MLE, the threshold of Kay’s estimator is larger.

In [14], the estimator for θ̂kay is not given. Since the least square estimation is equivalent

to ML method when the estimate is unbiased, hence, we use (2.11) for phase estimation,

i.e.

θ̂kay = arg {exp(−jω̂kayn0)A(ω̂kay)} (2.26)

Compared with Tretter’s estimate, Kay’s estimate does not require to use the phase un-

wrapping algorithm, which makes the computation more efficient. In [13], the author does

not give a specific phase unwrapping algorithm for Tretter’s method. In [19], the author

shows that Kay’s method is equivalent to Tretter’s method with Itoh’s phase unwrapping

algorithm.

11

Chapter 3

FFT-Based Phase and Frequency

Estimation

The Maximum Likelihood Estimator (MLE) has many applications in the estimation of

unknown parameters of a complex exponential because it is asymptotically efficient [18], i.e.

it achieves the CRLB as the number of samples becomes large. Many articles, such as [8],

[10], and [18], have discussed the methods to search for the value of the unknown variable

which maximizes the likelihood function (3.2). However, all of the methods are required to

know the entire signal before estimation. Therefore, the MLE is not the primary choice for

the applications that require fast estimation or computationally-constrained applications.

In some applications, the MLE can be used to analyse and to evaluate the performance of

other estimation techniques when the “truth” is not known. In order to do that, the Mean

Squared Error (MSE) of the ML frequency estimator, which is defined as E[(ω0 − ω̂)2],

and the MSE of ML phase estimator, which is defined as E[(θ0 − θ̂)2], where E denotes

the expectation, have to be significantly better than the estimator of interest. The best

any unbiased estimator can do is attaining the CRLB over a wide range of SNR values,

especially at high SNR.

Figure 3.1 shows an application using the MLE to analyse a hybrid Phase Locked Loop

(PLL) algorithm for the carrier synchronization of the distribute beamforming [17, 20]. In

this test, two software-defined radios (SDRs) are used as transmitter and receiver separately.

12

Transmitter Receiver

ML Estimator

PLL

MSE

Signal

Generator

Tx[n] Rx[n]

Figure 3.1: Application of Maximum Likelihood Estimation.

The Signal Generator produces the sinusoidal beacon Tx[n] = cos(nTω + θ), where ω is

known frequency and θ is known phase offset. The transmitter reconstructs the beacon

Tx[n] and then sends it to the receiver. After receiving the beacon, the receiver samples

the received signal and then sends the sampled signal Rx[n] = cos(nT ω̃ + θ̃) to the PLL

estimator. After convergence, the PLL estimator outputs the frequency and phase estimates,

ω̂PLL and θ̂PLL respectively. Finally, we compute the frequency MSE, E[(ω̃− ω̂PLL)
2], and

the phase MSE, E[(θ̃ − θ̂PLL)
2]. In this test, we do not know the true ω̃ and θ̃. Therefore,

we need to have an estimator with high accuracy to compute the best possible true values of

ω̃ and θ̃. As discussed in [18], the maximum likelihood estimator is asymptotically efficient.

Therefore, this estimator can be used to compute ω̃ and θ̃ when the number of samples is

large. As shown in Figure 3.1, the received signal Rx[n] is also sent to the ML estimator.

The outputs of the ML estimator are ω̂ML and θ̂ML. Due to its high accuracy, we assume

ω̃ = ω̂ML and θ̃ = θ̂ML. Hence, now we have enough knowledge to evaluate the performance

of the hybrid PLL.

The example presented above is not singular. There are many other applications requir-

ing a high accurate estimator. However, as discussed in Section 2.2, the frequency estimate

ω̂ML requires numerical methods to compute. Therefore, five approximate maximum like-

lihood estimators are proposed and discussed in this chapter. They are:

1. Approximate maximum likelihood estimator using Fast Fourier Transform (FFT) and

no post-processing (FFT estimator)

2. Approximate maximum likelihood estimator using FFT and quadratic interpolation

(FFT-Quad estimator)

13

3. Approximate maximum likelihood estimator using FFT and Secant method (FFT-

Secant estimator)

4. Approximate maximum likelihood estimator using FFT and Newton’s method (FFT-

Newton estimator)

5. Approximate maximum likelihood estimator using FFT and bisection method (FFT-

bisection estimator)

All the estimation techniques are based on the FFT. The only difference among them is the

post-processing after the FFT. For instance, the FFT-Quad estimator uses the quadratic

interpolation to compute the unknown parameters after FFT. The FFT-Secant estimator

and the FFT-Newton estimator use different root-finding algorithms to estimate the un-

known parameters. For each estimator, we will evaluate the frequency and phase MSEs as

a function of SNR. Also, we will discuss the computational complexity of each algorithm.

At the end of this chapter, we will summarize the performance and finally give a guideline

for choosing the algorithm for approximate MLE.

3.1 Approximate Maximum Likelihood Estimation using Fast

Fourier Transform and No Post-Processing

As discussed in Section 2.2, the frequency estimate of the maximum likelihood estimator

is

ω̂ML = argmax
ω∈Ω

|A(ω)| (3.1)

where

A(ω) =
1

N

N−1
∑

n=0

z[n] exp(−jnωT) (3.2)

and Ω ⊆ [0,∞).

In [8] and [9], Rife presents an approximate method which uses the Discrete Fourier

Transform (DFT) to approximately locate the value of ω, which maximizes |A(ω)|. In fact,

the M -point DFT is a sampled version of A(ω) at frequencies ω = 2πk
MT for k ∈ K and

14

K := {0, 1, . . . ,M − 1}. Usually, we use the Fast Fourier Transform (FFT) to compute

A(2πkMT) for k ∈ K [8]. Hence, (3.1) becomes to

k̂ = argmax
k∈K

∣

∣

∣

∣

A

(

2πk

MT

)
∣

∣

∣

∣

. (3.3)

After finding k̂, we can form an approximate estimate ω̂ML, ω̂FFT , by using (3.4)

ω̂FFT =
2πk̂

MT
, (3.4)

which requires an exhaustive search, but over a finite set of discrete points. Then the

approximate phase θ̂FFT can be estimated by using (3.5)

θ̂FFT = ∠{exp(−jω̂FFT t0)A(ω̂FFT)} (3.5)

where t0 := n0T .

In order to show how the FFTML estimator works, we present a numerical example here.

For example, an observation without noise has N = 513 samples, sampling period T = 1

second, first sample index n0 = −256, the frequency ω0 = 0.1 × 2π = 0.6283 rad/second

(rad/s) and the phase offset θ0 = 0 rad. We use a M = 212 points FFT to estimate the

frequency. As shown in Figure 3.2, the peak is located at k̂ = 410. After calculation by

using (3.4), we find ω̂FFT = 0.6289 rad/s, and θ̂FFT = 0 rad, which is as same as θ0. The

squared frequency estimate error is 3.7650 × 10−7.

If we increase M to 214, the peak is located at k̂ = 1638. Then ω̂FFT = 0.6282 rad/s,

which is much closer to ω0, and θ̂FFT = 0 rad. The squared error of the frequency estimate

is 2.3531 × 10−8, which is improved by 10 times from the previous case. If we increase M

to 218, the peak is located at k̂ = 26214. Then ω̂FFT = 0.6283 rad/s and θ̂FFT = 0 rad.

The squared frequency estimate error is again improved to 9.1918 × 10−11.

Figure 3.3 and Figure 3.4 show the MSE of the frequency and phase estimates of the FFT

MLE respectively as a function of SNR := 10 log10(b
2
0/2σ

2) for five values of M , M = 210,

M = 212,M = 214,M = 216, and M = 220, for a complex observation with AWGN. All the

results assume an observation with N = 513, sampling period T = 1 second, and the first

15

400 405 410 415 420
0

0.2

0.4

0.6

0.8

1

index

|A
|

Figure 3.2: FFT MLE example with M = 212.

sample time n0 = −256. The frequency is an independent random variable for a uniform

distribution

ω0 ∼ U(0.09 × 2π, 0.11 × 2π). (3.6)

The phase is an independent random variable for a uniform distribution

θ0 ∼ U(−π, π). (3.7)

500 realizations of the random complex exponential signal using (2.1) and AWGN are gen-

erated with fixed b0 = 1.

In Figure 3.3, the estimators with M = 210 and M = 212 fail to track on the CRLB

over the entire SNR range. The low-SNR threshold of all of the rest estimators is a SNR of

about -9dB. The estimator with M = 214 closely tracks the CRLB up to a SNR of about

0dB. The estimator with M = 216 closely tracks the CRLB up to a SNR of about 12dB. For

the estimator with M = 220, the estimation range is much wider than other four estimators.

16

−10 0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

M = 216

M = 220

CRLB

Figure 3.3: Mean squared frequency estimation error for complex observation of FFT MLE.

−10 0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

M = 216

M = 220

CRLB

Figure 3.4: Mean squared phase estimation error for complex observation of FFT MLE.

17

It tracks the CRLB for up to a SNR of about 38dB. In Figure 3.4, which shows the phase

estimation performance, all of the estimators can track the CRLB from -9dB to 60dB.

2^{10} 2^{12} 2^{14} 2^{16} 2^{18} 2^{20}
10

−1

10
0

10
1

10
2

Number of FFT points

E
xe

cu
tio

n
tim

e
fo

r
50

0
ob

se
rv

at
io

ns

Figure 3.5: Total execution time for 500 complex observations of FFT MLE.

Figure 3.3 shows that an increase of the value of M can improve the estimation accuracy.

However, when we increase M , the execution time also increases. Figure 3.5 shows the total

execution time for 500 complex observations of the FFT MLE. As shown in the figure, the

execution time increases when M increases. For the FFT MLE, the most time consumption

part is the computation of FFT. The computational complexity of the FFT is O(M logM).

If we increase M from M = 212 to M = 214, the execution time will be increased by a

factor of 4.67. Figure 3.5 shows that if we increase M from 212 to 220, the execution time is

increased by more than 100 times. One thing we should notice is since the Matlab uses the

multiple threads computation automatically, the plot in Figure 3.5 does not exactly follow

the ratio of M logM . In addition, memory space is an issue when using a large value of M .

In our simulation, we use double precision complex variable to store the output of one FFT

computation. Assume each double precision complex variable requires 128 bits. Then for

18

a 214 points FFT, we need 256 KB memory to store the values. For a 220 points FFT, we

need 32 MB memory to store the values. If we want to use single 228 points FFT, we need

to have a 4 GB memory to store the variables. Therefore, in order to achieve high accuracy,

the FFT ML estimator requires a high performance computer with large memory space.

3.2 Approximate Maximum Likelihood Estimation using FFT

and Quadratic Interpolation

Let us reconsider the FFT MLE example with M = 212 from Section 3.1. When ω0 =

0.1× 2π = 0.6283 rad/s, by using (3.8), we find that the peak of |A(ω)| is located between

k = 409 and k = 410.

kML =
ω0MT

2π
=

0.2π × 212 × 1

2π
= 409.6 (3.8)

However, the index of FFT cannot be an non-integer number. Therefore, in order to improve

the accuracy, one approach is to interpolate between points near the peak of the FFT. In

[12], the FFT magnitude is interpolated by quadratic polynomial to improve the estimation

accuracy. For example, we find the peak of FFT locates at FFT index k̂. A quadratic

fit y = a + bx + cx2 in the neighbourhood of the maximum can be computed given the

frequencies x ∈
{

2π(k̂−1)
MT , 2π(k̂)MT , 2π(k̂+1)

MT

}

and FFT magnitudes y = |A(x)|. Then the peak

of the quadratic fit, which is also the frequency estimate, is ω̂Quad = −b
2c . Finally, we can

estimate phase θ̂Quad by using (3.10). This method is described as the FFT-Quad MLE in

this thesis.

We use the example inFigure 3.2 to demonstrate how the FFT-Quad MLE works. We

use a M = 212 points FFT estimator to locate the peak at k̂ = k1 = 410, as shown in Figure

3.6.

We can compute the quadratic polynomial coefficients a, b, c by solving the linear system

19

405 406 407 408 409 410 411 412 413 414 415
0.9

0.92

0.94

0.96

0.98

1

index

|A
|

FFT Plot
k

ML

Quadratic Interpolation

Figure 3.6: FFT-Quad MLE Example.

(3.9),

(

2π(k̂−1)
MT

)2
2π(k̂−1)

MT 1
(

2π(k̂)
MT

)2
2π(k̂)
MT 1

(

2π(k̂+1)
MT

)2
2π(k̂+1)

MT 1

c

b

a

=

|A(2π(k̂−1)
MT)|

|A(2π(k̂)MT)|
|A(2π(k̂+1)

MT)|

(3.9)

which gives an exact quadratic fit to the data. The matrix on the left is commonly referred

as a Vandermonde matrix [21]. After solving the linear system in (3.9), we compute ω̂Quad =

−b
2c , which is the peak of the quadratic fit and also the frequency estimate.

In our example, the maximum found by the quadratic interpolation is ω̂Quad = 0.6283.

Then, we can estimate θ̂Quad by calculating (3.10)

θ̂Quad = ∠{exp(−jω̂Quadt0)A(ω̂Quad)} = 0. (3.10)

The associated squared error of the frequency estimate is 2.9591 × 10−12. This squared

20

error is much smaller than that of the FFT estimator with the same M value and also

smaller than that of the FFT estimator with M = 218.

Figure 3.7 and Figure 3.8 show the MSE of the frequency and phase estimates of the

FFT-Quad ML respectively as a function of SNR for different values of M, for a complex

observation with AWGN. All the results assume an observation with N = 513, sampling

period T = 1 second, and the first sample time n0 = −256. The frequency and phase are

independent random variables for the uniform distributions (3.6) and (3.7) respectively. 500

realizations of the random complex exponential signal using (2.1) and AWGN are generated

with fixed b0 = 1. Since we have known that with the increase of the value of M , the

accuracy of the estimation will be improved as well. Hence, we only consider about the

cases with small values of M . Here we only consider M = 210, M = 212, and M = 214.

−10 0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.7: Mean squared frequency estimation error for complex observation of FFT-Quad
MLE.

In Figure 3.7, all estimators have the same threshold, which is -9dB. However, the

estimator with M = 210 fails to achieve the CRLB after 0dB. Compared with the FFT

21

−10 0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.8: Mean squared phase estimation error for complex observation of FFT-Quad
MLE.

22

MLEs, the estimators with M = 212 and M = 214 have a wider estimation range. The

former one tracks the CRLB up to a SNR of about 38dB. And the latter one tracks the

CRLB up to a high SNR of 60dB. Figure 3.8 shows that all of the phase estimators can

attain the CRLB.

Compared with Figure 3.3 and Figure 3.4, Figure 3.7 and Figure 3.8 show that the es-

timation accuracy is improved by a significant level because of the quadratic interpolation

post-processing. In order to form the Vandermonde matrix in (3.9), we need four multi-

plications. The computational complexity of matrix inversion via Gaussian Elimination is

O(N3) and the approximate number of operations is 2n3/3 [22]. Therefore, for a 3 × 3

matrix, the number of operations of matrix inversion is 18. For the matrix multiplication,

the number of multiplication is 27. Therefore, finally, the computational complexity for

FFT-Quad MLE is O(M logM) + 45 ' O(M logM) +O(1).

3.3 Approximate Maximum Likelihood Estimation using FFT

and Secant Method

In [8] and [9], the maximum likelihood estimation search routine has two parts. The

first search part is called the coarse search, which is the FFT MLE described in Section 3.1.

The accuracy of the coarse search is strongly affected by the number of points of FFT, as

discussed in Section 3.1. In order to improve the estimation accuracy, the coarse search is

followed by a fine search. One example of a fine search is the FFT-Quad MLE presented in

Section 3.2. In [8], another fine search approach was described: the Secant method. This

section discusses the Secant method and its application to ML frequency estimation.

The Secant method is a iterative method used to find roots of a equation f : < → <.
The iteration formula is [23]

x(m) :=
x(m−2)f(x(m−1))− x(m−1)f(x(m−2))

f(x(m−1))− f(x(m−2))
, m ≥ 2

= x(m−1) − f(x(m−1))
x(m−1) − x(m−2)

f(x(m−1))− f(x(m−2))
. (3.11)

The two initial values, x(0) and x(1), are chosen to lie close to the desired root. As shown

23

in Figure 3.9, we want to find the root of y = 4(x + 1)(x − 0.5)(−x + 2)(−x + 2.8) near

x = 0.5. We picked up the initial point x(0) = 1.5 and x(1) = −0.5. Then we apply (3.11)

to compute x(2) and continue. After two iterations, x(3) converges to a value which is very

close to the root at x = 0.5.

−1 −0.5 0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

5

10

x

f(
x
)

x0
x1

x2x3

Figure 3.9: The Secant Method example with two iterations.

Finding ω which maximizes |A(ω)| is equivalent to finding a root of the first order

derivative of |A(ω)| or a root of the first order derivative of |A(ω)|2. The DFT in (2.10) can

be written in rectangular form as:

A(ω) := B(ω) + jC(ω) (3.12)

where

B(ω) :=
1

N

N−1
∑

n=0

βn cos(nωT) + γn sin(nωT), (3.13)

C(ω) :=
−1

N

N−1
∑

n=0

βn sin(nωT)− γn cos(nωT), (3.14)

24

and where

βn = <{z[n]} and (3.15)

γn = ={z[n]}. (3.16)

Hence,

F (ω) := |A(ω)|2 = A(ω)A∗(ω) = B2(ω) + C2(ω). (3.17)

Now, we have

F ′(ω) =
dF

dω
:= 2B

dB

dω
+ 2C

dC

dω
(3.18)

where
dB

dω
:=

T

N

N−1
∑

n=0

n(−βn sin(Tnω) + γn cos(Tnω))

dC

dω
:=

−T

N

N−1
∑

n=0

n(βn cos(Tnω) + γn sin(Tnω))

Therefore, (3.11) becomes

ω̂(m) = ω̂(m−1) − F
′

(ω̂(m−1))
ω̂(m−1) − ω̂(m−2)

F
′

(ω̂(m−1))− F
′

(ω̂(m−2))
. (3.19)

The stopping criteria for the Secant Method includes three conditions [22]:

1. |ω̂(m) − ω̂(m−1)| ≤ ε, where ε is the error tolerance

2. F
′

(ω̂(m)) = F
′

(ω̂(m−1))

3. F
′

(ω̂(m)) = 0.

When any of them is satisfied, the iteration will stop and output the latest ω̂(m), which

is the approximate maximum likelihood frequency estimate ω̂Secant. The phase estimate is

then

θ̂Secant = ∠{exp(−jω̂Secantt0)A(ω̂Secant)}. (3.20)

The algorithm of the Secant method is described in Algorithm 1.

25

Algorithm 1 The Secant Method

Import ω̂(0), ω̂(1)

∆ = 1, n = 1
while |∆| ≥ ε do

n = n+ 1
∆ = F

′

(ω̂(m−1)) ω̂(m−1)−ω̂(m−2)

F ′(ω̂(m−1))−F ′ (ω̂(m−2))

ω̂(m) = ω̂(m−1) −∆
if F

′

(ω̂(m−1)) == F
′

(ω̂(m)) OR F
′

(ω̂(m)) == 0 then

BREAK;
end if

end while

return ω̂(m)

We use the example presented in Section 3.1 to show how the FFT-Secant MLE works.

As shown in Figure 3.6, the peak is located at k = 410. Then we pick up the neighbourhood

points and assign them to be ω̂(0) and ω̂(1). Thus, ω̂(0) = 2π × 409/(MT) and ω̂(1) =

2π × 411/(MT). Now we start the iteration. As shown in Figure 3.10, the estimator only

takes two steps to converge within ε = 10−4. The iteration finds ω̂Secant = 0.6284. Since

the error tolerance is a parameter that we control, we can ensure that the squared error

of frequency estimate is less than 10−8. In fact, the squared error of frequency estimate is

1.8948 × 10−9. When we increase ε to 10−6, the iteration takes 4 steps to converge.

Figure 3.11 and Figure 3.12 show the MSE of the frequency and phase estimators of

the FFT-Secant MLE respectively as a function of SNR for three values of M , M = 210,

M = 212, and M = 214, for a complex observation with AWGN. All the results assume

an observation with N = 513, sampling period T = 1 second, and the first sample time

t0 = −256. The frequency and the phase are independent random variables for uniform

distributions given by (3.6) and (3.7) respectively. 500 realizations of the complex expo-

nential signal using (2.1) and AWGN are generated with fixed b0 = 1. The error tolerance

ε is set to 10−4 for the iteration. The initial values are ω̂(0) = (k − 1)2π/(MT) and

ω̂(1) = (k + 1)2π/(MT), where k is the peak index estimated by the coarse search.

In Figure 3.11, the thresholds of the estimators with M = 212 and M = 214 are both

about a SNR of -9dB. For the estimator with M = 212, it tracks the CRLB up to a SNR

about 35dB, which is better than the FFT-Quad estimator with the same value of M . The

26

0 1 2 3 4

10
−15

10
−10

Number of steps

S
qu

ar
ed

 E
rr

or

ε = 10−6

ε = 10−4

Figure 3.10: FFT-Secant MLE example.

FFT-Secant estimator with M = 214 can achieve the CRLB up to 60dB. As shown in Figure

3.12, since the FFT-Secant MLE has a bad frequency estimation when M = 210, the phase

estimation also fails to attain the CRLB.

The performance of the iteration method is affected by the value ε. In Figure 3.13 and

Figure 3.14, we reduce ε from 10−4 to 10−6. In Figure 3.13, the thresholds of the FFT-

Secant estimators with M = 212 and M = 214 remain the same. However, the FFT-Secant

estimator with M = 212 can track the CRLB up to 60dB.

In both cases, the estimator with M = 210 does not converge. Therefore, it is worth

discussing the convergence condition. Assume ω̂(0) < ω̂(1). Because F : [ω̂(0), ω̂(1)] → < and

F ∈ C2{[ω̂(0), ω̂(1)]}, therefore, F ′(ω) is a continuous function on the interval [ω̂(0), ω̂(1)]. In

addition, we pick up ω̂(0) and ω̂(1) from the left side and the right side of the peak point,

which is located by the coarse search. Hence, we know F
′

(ω̂(0))F
′

(ω̂(1)) < 0. According to

theorem of zeros for continuous functions, we can ensure that there exists τ ∈ (ω̂(0), ω̂(1))

such that F ′(τ) = 0. In addition, since F (τ) is the maximum, therefore, F
′′

(τ) 6= 0.

27

−10 0 10 20 30 40 50 60

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.11: Mean squared frequency estimation error for complex signal of FFT-Secant
MLE with ε = 10−4.

28

−10 0 10 20 30 40 50 60

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.12: Mean squared phase estimation error for complex signal of FFT-Secant MLE
with ε = 10−4.

29

−10 0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.13: Mean squared frequency estimation error for complex signal of FFT-Secant
MLE with ε = 10−6.

30

−10 0 10 20 30 40 50 60

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.14: Mean squared phase estimation error for complex signal of FFT-Secant MLE
with ε = 10−6.

31

Therefore, if the FFT gives the points which are sufficiently close to τ , then we can ensure

the convergence [22]. The reason that the estimator with M = 210 does not converge is the

initial points we pick up are not close enough to the root. It also explains why when we

increase the value of M to 212, the estimator can attain the CRLB for a wide range of SNR

values. In addition, when

F
′

(ω̂(m−1))
ω̂(m−1) − ω̂(m−2)

F
′

(ω̂(m−1))− F
′

(ω̂(m−2))
' 0, (3.21)

the FFT-Secant MLE will not converge either.

In summary, compared with the FFT ML estimator and the FFT-Quad ML estimator,

the estimation accuracy of the FFT-Secant ML estimator is improved significantly for small

values of M . With a suitable error tolerance, the FFT-Secant ML estimator can track the

CRLB over a wide range of SNR with a relatively coarse FFT, as shown in Figure 3.14.

3.4 Approximate Maximum Likelihood Estimation using FFT

and Newton’s Method

Newton’s Method, also known as Newton-Raphson Method, is another method used to

find the root of the function f : < → <. The iterative formula for Newton’s method is [22]:

x(m) = x(m−1) − f(x(m−1))

f ′(x(m−1))
∀m ≥ 1 (3.22)

where f
′

(x) is the first order derivative of the function f respect to the variable x. Rather

than two initial values in the Secant method, only one is needed in Newton’s method.

In order to apply Newton’s method for finding a root of the first order derivative of

F
′

(ω)(3.18), we need to compute F
′′

(ω) = d2F
dω2 . We have

d2F

dω2
= 2

(

dB

dω

)2

+ 2B
d2B

d2ω
+ 2

(

dC

dω

)2

+ 2C
dC2

d2ω
(3.23)

32

where

dB

dω
:=

T

N

N−1
∑

n=0

n(−βn sin(Tnω) + γn cos(Tnω)), (3.24)

dC

dω
:=

−T

N

N−1
∑

n=0

n(βn cos(Tnω) + γn sin(Tnω)), (3.25)

d2B

dω2
:=

T 2

N

N−1
∑

n=0

n2(−βn cos(Tnω)− γn sin(Tnω)), and (3.26)

d2C

dω2
:=

T 2

N

N−1
∑

n=0

n2(−βn sin(Tnω) + γn cos(Tnω)). (3.27)

Then the iterative formula becomes to

ω̂(m) = ω̂(m−1) − F
′

(ω̂(m−1))

F ′′(ω̂(m−1))
. (3.28)

The stopping criteria of Newton’s Method are the same as those of the Secant Method.

Then we know the approximate maximum likelihood frequency estimate ω̂Newton = ω̂(m).

Finally, we can find θ̂Newton by

θ̂Newton = ∠{exp(−jω̂Newtont0)A(ω̂Newton)}. (3.29)

The algorithm of the Newton’s method is described in Algorithm 2.

Algorithm 2 Newton’s Method

Import ω̂(0)

∆ = 1, n = 0
while |∆| ≥ ε do

n = n+ 1

∆ = F
′

(ω̂(m−1))

F ′′(ω̂(m−1))

ω̂(m) = ω̂(m−1) −∆
if F

′

(ω̂(m−1)) == F
′

(ω̂(m)) OR F
′

(ω̂(m)) == 0 then

BREAK;
end if

end while

return ω̂(m)

We use Figure 3.6 as an example to show how the FFT-Newton estimator works. As

33

0 1 2
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

Number of steps

S
qu

ar
ed

 e
rr

or

ε = 10−4

ε = 10−6

Figure 3.15: FFT-Newton MLE example.

shown in Figure 3.6, the peak is located at k = 410. Then we pick up one neighbourhood

point and assign it to be ω̂(0). Thus, ω̂(0) = 2π×409/(MT). Now we start the iteration. As

shown in Figure 3.15, the estimator only takes one step to converge within ε = 10−4. The

iteration finds ω̂Newton = 0.6283. Since the error tolerance is controllable, we can ensure

that the squared error of frequency estimate is less than 10−8. In fact, the squared error of

frequency estimate is 7.9984 × 10−10. If we increase ε to 10−6, the iteration only takes one

more step to converge.

Figure 3.16 and Figure 3.17 show the MSE of the frequency and phase estimators of

the FFT-Newton MLE respectively as a function of SNR for three values of M, M = 210,

M = 212, and M = 214, for a complex observation with AWGN. All the results assume

an observation with N = 513, sampling period T = 1 second, and the first sample time

t0 = −256. The frequency and the phase are independent random variables for uniform dis-

tributions given by (3.6) and (3.7) respectively. 500 realizations of the complex exponential

signal using (2.1) and AWGN are generated with fixed b0 = 1. The error tolerance ε is set

34

to 10−4 for the iteration. The initial value is ω̂(0) = (k − 1)2π/(MT), where k is the peak

index estimated by the coarse search.

−10 0 10 20 30 40 50 60

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.16: Mean squared frequency estimation error for complex signal of FFT-Newton
MLE with ε = 10−4.

Compared with the FFT-Secant estimator with the same M , the FFT-Newton estimator

with M = 212 can track the CRLB up to the SNR of 60dB while the iteration has ε = 10−4.

It shows that the FFT-Newton estimator has a better iteration performance than the FFT-

Secant estimator for small M . Figure 3.17 shows the mean squared phase estimation error.

Similar to the FFT-Secant MLE, the phase estimator with M = 210 fails to track the CRLB

over the entire range. It is caused by the bad estimation of the frequency.

3.4.1 Comparison of the FFT-Secant MLE and the FFT-Newton MLE

As shown in Figure 3.13 and Figure 3.16, both MLEs can attain the CRLB up a high

SNR. Therefore, a discussion of their errors, computational complexity, and convergence is

necessary.

35

−10 0 10 20 30 40 50 60

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.17: Mean squared phase estimation error for complex signal of FFT-Newton MLE
with ε = 10−4.

36

The error formula of the Secant method is

α− xn+1 = −(α− xn−1)(α − xn)
f

′′

(ζn)

2f ′(ξn)
(3.30)

with ξn between xn−1 and xn, and ζn between xn−1 , xn, and α [21].

For Newton’s method, the error formula is

α− xn+1 = −(α− xn)
2 f

′′

(ζn
f ′(xn)

. (3.31)

For both methods, the error formulas are similar. If we pick up the initial point(s) very

close to the root α, the converge errors should be very close.

As shown in the iteration formulas (3.11) and (3.22), for each iterate, the Secant Method

requires one function evaluation, f(x), and Newton’s method requires two function eval-

uations, f(x) and f
′

(x). Therefore, Newton’ s method is generally more expensive per

iteration.

Newton’s method tends to converge faster, however, than the Secant method. Recall the

definition of the order of convergence. A sequence of iterates {xn|n ≥ 0} is said to converge

with order p ≥ 1 to a point α if

|α− xn+1| ≤ c|α− xn|p n ≥ 0 (3.32)

for some c ≥ 0. The constant c is called the rate of convergence of xn at α [21]. According

to this definition, Newton’s method has an order of convergence p = 2. For the Secant

method, the order of convergence is p = (1 +
√
5)/2 ' 1.62. Therefore, Newton’s method

trends to converge more rapidly, and consequently it will require fewer iterations to attain

a given desired accuracy, which has been shown in Figure 3.10 and Figure 3.15. The reason

is that x(m−1)−x(m−2)

f(x(m−1))−f(x(m−2))
is an approximation of 1/f

′

(x).

In fact, as discussed in [21], if the execution time to evaluate f
′

(x) is more than 44 percent

of that to evaluate f(x), then the Secant method is more efficient. In our application, the

function evaluation of F
′

(x) requires 2N evaluations on trigonometric functions, 2(4N+1)+

2(5N +2)+ 4 = 18N +10 multiplications, and 8N +1 additions. The functions evaluation

37

of F
′′

(x) requires 2N evaluations on trigonometric functions, 2(5N + 2) + 2(6N + 2) +

12 = 26N + 20 multiplications, and 8N + 3 additions. Therefore, for the computation of

multiplications and additions, the ratios of evaluation are 26N+20
18N+10 and 8N+3

8N+1 respectively.

Therefore, the Secant method tends to be more efficient in this application when N is large.

3.5 Approximate Maximum Likelihood Estimation using FFT

and Bisection Method

Although we have introduced two iterative ML estimators which can track the CRLB

over a wide range of SNR, both of them have a common drawback. Without the knowledge

of the observation, the estimator may pick up the points which are not close enough to

the peak. Therefore, in order to ensure the converge, we introduce another root-finding

method called the bisection method. If f is a continuous function on the interval [a, b] and

f(a)f(b) < 0, then the bisection method converges to the root of f by halving the range.

The best estimation is the midpoint of the smallest range found. Therefore, after n steps,

the absolute error is

|x(n) − x(n−1)| = |b− a|
2n

.

In our application, we firstly use the coarse search to locate the peak index, k, of the

Fourier Transform observation. Then we initialize ω(0) = (k − 1)2π/(MT) and ω(1) =

(k + 1)2π/(MT). Since ω(0) and ω(1) locate on two opposite sides of ω̂bisection, which

maximizes F (x) approximately, we can ensure convergence. The stop conditions for the

FFT-bisection MLE is the same as those of the FFT-Secant MLE. The algorithm of the

bisection method is described in Algorithm 3.

Figure 3.18 and Figure 3.19 show the MSE of the frequency and phase estimators of the

FFT-bisection MLE respectively as a function of SNR for M = 210, M = 212, and M = 214,

for a complex observation. All the results assume an observation with N = 513, sampling

period T = 1 second, and the first sample time t0 = −256. The frequency and the phase

are independent random variables for the uniform distributions (3.6) and (3.7) respectively.

500 realization of the complex exponential signal using (2.1) and AWGN are generated with

38

Algorithm 3 The Bisection Method

Import ω(0), ω(1)

if F
′

(ω(0)) ≤ 0 then

lo = ω(0)

hi = ω(1)

else

lo = ω(1)

hi = ω(0)

end if

ω(2) = lo+ (hi−lo)
2

m = 2
while (ω(m−1) 6= lo)AND(ω(m−1) 6= hi) do
m = m+ 1
if F

′

(ω(m−1)) ≤ 0 then

lo = ω(m−1)

else

hi = ω(m−1)

end if

∆ = hi−lo
2

ω(m) = lo+∆
if |∆| ≤ ε OR F

′

(ω̂(m−1)) == F
′

(ω̂(m)) OR F
′

(ω̂(m)) == 0 then

BREAK
end if

end while

return ω(m)

39

fixed b0 = 1. The error tolerance ε is set to 10−4 for the iteration. The initial values are

ω̂(0) = (k − 1)2π/(MT) and ω̂(1) = (k + 1)2π/(MT), where k is the peak index estimated

by the coarse search.

−10 0 10 20 30 40 50 60

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

ε2

Figure 3.18: Mean squared frequency estimation error for complex signal of FFT-bisection
MLE with ε = 10−4.

Compared with the FFT-Secant ML estimator and the FFT-Newton ML estimator, the

most obvious advantage of the FFT-bisection ML estimator is that the estimator converges

even with small values of M . As shown in Figure 3.18, the estimator with M = 210 can

track the CRLB over a small range of SNR. However, compared with the FFT-Secant and

the FFT-Newton estimators with the same value of M , the estimators with M = 212 and

M = 214 have worse performances. They can only track the CRLB up to a SNR about

9dB, which is a smaller estimation range. In order to improve the performance, we increase

ε from 10−4 to 10−6. As shown in Figure 3.20, the frequency estimation range is extended

to the SNR of 50dB. We try to increase ε further to 10−8. As shown in Figure 3.21, the

frequency estimation range extends to the SNR of 60dB.

40

−10 0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.19: Mean squared phase estimation error for complex signal of FFT-bisection MLE
with ε = 10−4.

41

−10 0 10 20 30 40 50 60
10

−15

10
−10

10
−5

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

ε2

Figure 3.20: Mean squared frequency estimation error for complex signal of FFT-bisection
MLE with ε = 10−6.

42

−10 0 10 20 30 40 50 60

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR(dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

M = 210

M = 212

M = 214

CRLB

Figure 3.21: Mean squared frequency estimation error for complex signal of FFT-bisection
MLE with ε = 10−8.

43

Although decreasing the ε can improve the estimation accuracy, at the same time, the

execution time also increases. Compared with other two iterative estimators, the FFT-

bisection estimator has the slowest convergence speed. By using the definition of the order

of convergence (3.32) given in Section 3.4.1, we can find the order of convergence of the

bisection method is 1. It means the bisection converges linearly. Compared with other

two estimators, which converge quadratically, the FFT-bisection estimator does not have

advantage on convergence speed. Therefore, the bisection method is not the first choice.

When other two estimators do not converge, then we can apply the FFT-bisection MLE for

estimation because the convergence is guaranteed.

3.6 Conclusion

In this chapter, we discussed five approximate maximum likelihood estimators and anal-

ysed the their performance in terms of the mean squared frequency and phase estimation

errors as well as the computational complexity. Firstly, we introduced the Fast Fourier

Transform Maximum Likelihood Estimator (FFT MLE), which cannot track the CRLB at

high SNR unless the number of FFT points becomes very large. Then we presented four

fine search techniques, each of them uses the FFT MLE as the coarse search and refines

this coarse estimate to improve the performance. The first one is using the quadratic in-

terpolation to locate the approximate maximum, which has better estimation performance

but still cannot track the CRLB at the high SNR unless M is large. Then we provided a

detailed study about the FFT-Secant MLE, which is presented by Rife in [8]. After that,

we proposed other two iterative estimators: the FFT-Newton MLE and the FFT-bisection

MLE. We discussed the MSE of these three iterative MLE as well as the computational

complexity of them.

Besides the FFT-Secant MLE and the FFT-Newton MLE with bad initial values, all the

proposed FFT-based MLEs have similar threshold, which is about a SNR of -9dB. All of

them can attain the CRLB at low SNR. However, when the SNR is high, some MLEs fail to

achieve the CRLB. For a small value of M , the FFT MLE cannot achieve the CRLB at high

SNR values. Compared with the FFT MLE, the FFT-Quad MLE has a wider estimation

44

range. However, it only achieves the CRLB at 60dB when M = 214. For the iterative

MLEs, the FFT-Secant MLE and the FFT-Newton MLE do not converge when M = 210.

The reason is the initial points are not sufficiently close to the root of F
′

(ω). When M is

larger, both FFT-Secant and FFT-Newton MLEs can attain the CRLB up to 60dB SNR

with reasonable error tolerance. The FFT-bisection MLE can always attain the CRLB at

60dB SNR because its algorithm guarantees the convergence.

For the estimation at low SNR, we recommend the user to choose the FFT MLE or

the Quad MLE with two reasons. The first reason is both MLEs can attain the CRLB at

low SNR. In addition, the computational complexity of the FFT MLE and the Quad MLE

is less than the iterative MLE because the function evaluation of F
′

(ω) is not efficient.

For the estimation at high SNR, neither the FFT MLE nor the Quad MLE is a good fit

because both of them fail to achieve the CRLB at high SNR unless we use a large value of

M . Among the three iterative MLEs, we encourage the user to try the FFT-Secant MLE

at first. The FFT-Secant needs less computation than the FFT-Newton MLE and has

faster convergence speed than the FFT-bisection MLE. When the FFT-Secant MLE does

not converge, an alternative estimator is the FFT-bisection MLE, which can guarantee the

convergence.

We believe the these discussed methodologies will be useful in applications such as data

analysis and performance evaluation. Therefore, for a system with low sampling rate, the

proposed estimators can be applied to the real-time applications via hardware accelerating

such as Field-Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU).

By using these devices, the most time consuming part, the computation of the FFT, can

be reduced significantly.

45

Chapter 4

Zero Crossing Phase and

Frequency Estimation

The common feature of the ML estimators presented in previous chapter is the estimator

requires to know the entire signal before doing estimation. However, in a real-time applica-

tion, this approach may lead to undesired latency in the computation of the estimates. In

real-time applications, it is desirable to estimate the unknown parameters in a sequential

way. This section presents a new low-complexity and low-latency algorithm for estimating

the phase and frequency of a single tone in white noise. The proposed “zero-crossing” (ZC)

phase and frequency estimator is based on zero-crossing detection of the real and imaginary

parts of the complex observation. Like Tretter and Kay estimators in [13] and [14], the ZC

estimator is based on the linear regression of the instantaneous phase of the observation of

(2.1). A key difference is that the ZC estimator operates only on the time/phase coordinates

of the real and imaginary zero crossings of (2.1). An advantage of this approach is that no

arctangent operations are required since the phase of the signal at zero crossings is known

(modulo 2π). Another advantage of this approach is that the number of zero crossing is

(2.1) is typically less than N . A sequential least squares implementation of the zero-crossing

estimator is also presented in which the phase and frequency estimates are updated as each

new crossing is detected. This feature provides the availability for real-time applications.

46

4.1 Algorithm

4.1.1 Zero-Crossing Phase and Frequency Estimator

The zero-crossing estimator operates by detecting zero crossings in the real and imagi-

nary components of (2.1) and storing the estimated time and phase of these zero crossing

points to a coordinate set S = {(t1, φ1), . . . , (tL, φL)} where L is the number of detected

zero crossings. The zero crossing occur at known phase (modulo 2π) according to Table

4.1. The ZC estimate is the obtained by performing linear regression on the coordinate set

S.

Table 4.1: Phase of a complex exponential at zero crossing

type of zero crossing phase

imag part, positive k2π

real part, negative k2π + π/2

imag part, negative k2π + π

real part, positive k2π + 3π/2

In order to avoid the incorrect zero crossing detection, which can be caused by the

noise, a state machine shown in Figure 4.1 is used to detect zero crossings. The variable

x[n] denotes either the real part or imaginary part of z[n]. A negative-slope zero crossing

is detected on state transitions 1 → 2 and 3 → 2. A positive-slope zero crossing is detected

on state transitions 2 → 1 and 4 → 1. The hysteresis parameter α ≥ 0 sets the threshold

at which zero crossings are detected. Two of these state machines run simultaneously, each

appending coordinates to S as zero crossings are detected in the real and imaginary parts

of the observation.

In order to illustrate how the state machine works, consider the example shown in Figure

4.2 with α = 0.5. We initialize the coordinate set S = ∅. The first zero crossing is detected

by the imaginary state machine as a positive-slope zero crossing of the imaginary part of

the signal when state of the imaginary signal transitions from state 4 to state 1 at sample

index n = 8. The time of this crossing is estimated by using a simple linear interpolation

between the last sample in state 2, i.e. n = 4, and the first sample in state 1, i.e. n = 8.

47

Figure 4.1: State machine implementation of the zero crossing detector.

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

sample index n

ob
se

rv
at

io
n

real part
imaginary part

Figure 4.2: Noisy observation with α = 0.5.

48

Therefore, the time t1 is computed by (4.1)

t1 = tn1 −
={z[n1]}

={z[n2]}−={z[n1]}
tn2−tn1

(4.1)

where tn1 = 4T , tn2 = 8T and ={z[n]} denotes the value of the imaginary part of the

complex exponential signal z[n] at sample index n. The phase of this positive-slope zero

crossing of the imaginary signal is set to zero. Hence, the first coordinate (t1, 0) is added

to the coordinate set S.
The next zero crossing in Figure 4.2 is detected by the real state machine as a negative-

slope zero crossing of the real part of the signal when state of the real signal transitions

from state 3 to state 2 at sample index n = 12. The time of this zero crossing is estimated

by the simple linear interpolation between the last sample in state 1, i.e. n = 9, and the

first sample in state 2, i.e. n = 12. Therefore, the time t2 is computed by (4.2)

t2 = tn2 −
<{z[n2]}

<{z[n1]}−<{z[n2]}
tn1−tn2

(4.2)

where tn1 = 9T , tn2 = 12T and <{z[n]} denotes the value of the real part of the complex

exponential signal z[n] at sample index n. The phase of this negative-slope zero crossing of

the real signal is set to π/2 and the second coordinate (t2, π/2) is added to the coordinate

set S.
This processing is repeated as additional zero crossings are detected by the real and

imaginary state machines. In the example shown in Figure 4.2, a total of five zero crossings

are detected. Therefore, S = {(t1, 0), (t2, π/2), (t3, π), (t4, 3π/2), (t5, 2π)}. At any point in

time once L ≥ 2, the zero crossing phase and frequency estimates can be generated by

performing a linear regression [24] on S to determine the least-squares fit for the slope and

intercept. the stop and intercept are set to ω̂ZC and θ̂ZC , respectively.

4.1.2 Sequential Implementation

Like other linear-regression-based estimators, such as Tretter’s method, the ZC estimator

also can be implemented efficiently on a sample-by-sample basis. Prior to the first sample

49

of the observation, we initialize the tracking variables A = B = C = D = E = 0. When

a new coordinate (ti, θi) is added to the coordinate set S, the tracking variables are also

updated as follows:

A = A+ t2i ,

B = B + 1,

C = C + ti

D = D − tiθi, and

E = E − θi (4.3)

As shown in [24], the intercept and slope can be calculated directly from the tracking

variables as

θ̂ZC = intercept = −EA− CD

BA− C2
, and (4.4)

ω̂ZC = slope = −C

A
θ̂ZC − D

A
. (4.5)

4.2 Computational Complexity

Since there are typically four real and imaginary zero crossings per period, the number

of real and imaginary zero crossings in (2.1) is approximated as L ' 4Nf0
fs , where f0 = ω0

2π .

At each detection of zero crossing, the estimator calculates the time of the zero crossing

(via interpolation) and also updates the tracking variables. The simple linear interpolation,

as shown in (4.1) and (4.2), requires one real-valued multiplication and three real-valued

additions. The update of the tracking variables requires two real-valued multiplications and

five real-valued additions. Computing the intercept and slope in (4.4) and (4.5) requires

eight real-valued multiplications and five real-valued additions. Therefore, the total number

of multiplications required to implement the zero-crossing estimator can be approximated

as

number of real multiplication ' 3L+ 8 =
12Nf0
fs

+ 8, (4.6)

50

and

number of real addition ' 8L+ 5 =
32Nf0
fs

+ 5. (4.7)

Note that these operations (except for the last eight multiplications and the last five addi-

tions) can be performed as the sample arrives. Also, there are no arctangent operations,

which are typically performed with a lookup Table 4.2.

Table 4.2: Computational Complexity of Tretter, Kay, and zero-crossing estimators

Algorithm Number of real multiplication Number of arctangent

Zero-crossing 12Nf0
fs +O(1) 0

Kay with exact atan2 5N +O(1) N − 1

Tretter with exact atan2 N +O(1) N

Kay with approx atan2 7N +O(1) 0

Tretter with approx atan2 3N +O(1) 0

For the approximations for the arctangent function were discussed in [25], each approx-

imate arctangent can be computed with one to three real-valued multiplications. In the

table above, we assume two real multiplications per arctangent operation. For the complex

multiplication, we use the fact that one complex multiplication is equal to four real-valued

multiplications.

4.3 Numerical Results and Discussion

This section presents numerical results comparing the proposed zero-crossing estimator

to Tretter’s and Kay’s estimators. For Tretter’s and Kay’s estimators, we use both the

exact arctangent and the approximate four quadrant arctangent [25].

Figure 4.3 and Figure 4.4 show the MSE of the frequency and phase estimators of the

zero-crossing estimator, Kay’s estimator, and Tretter’s estimator respectively as a function

of SNR for a complex observation. All the results assume an observation with N = 513,

sampling period T = 1 second, and the first sample time t0 = −256. The frequency is an

independent random variable for a uniform distribution

ω0 ∼ U(0.09 × 2π, 0.11 × 2π). (4.8)

51

The phase is an independent random variable for a uniform distribution

θ0 ∼ U(−π, π). (4.9)

500 realizations of the complex exponential signal using (2.1) and AWGN are generated

with fixed b0 = 1. The hysteresis parameter of the ZC estimator is α = 0.4. Since Tretter’s

method using the exact arctangent is as same as Kay’s method using the exact arctangent

[19], we use the same plot for these two methods.

−10 −5 0 5 10 15 20 25 30 35 40
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 4.3: Mean squared frequency estimation error of ZC estimator with α = 0.4.

Figure 4.3 shows the mean squared frequency estimation error as a function of SNR.

Besides Kay’s estimator with the approximate arctangent, all the estimators have the same

threshold, which is about a SNR of 10dB. The ZC estimator provides frequency within

about 2.5dB of the CRLB for 10 ≤ SNR ≤ 30dB. Above 30dB SNR, the ZC estimator’s

performance continues to improve, but deviates from the CRLB due to the error of linear

interpolation as discussed in [26]. Tretter’s estimator, independent of which method is used

52

−10 −5 0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 4.4: Mean squared phase estimation error of ZC estimator with α = 0.4.

to calculate arctangent function, can always track the CRLB up to a SNR of 40dB. Kay’s

estimator with the approximate arctangent function fails to track the CRLB. The reason

is that the Kay estimator performs arctangent operations on the phase increments between

two consecutive samples of the observation. At high SNR the sequence of phase increments

tends to be very similar. Hence, any error in the arctangent approximation is repeated and

the frequency estimate becomes biased.

Figure 4.4 shows the mean squared phase estimation error as a function of SNR. The

threshold of all the estimators is about a SNR of 10dB. The ZC estimator tracks the CRLB

within about 2.5 dB up to a SNR of 30dB. After 30 dB, the ZC estimator’s performance

still improves but deviates from the CRLB due to the error of linear interpolation. Since

the phase estimator of Kay’s method depends on the estimated frequency, the phase plot of

the Kay’s method with approximate arctangent starts to deviate from the CRLB at 20dB.

Other estimators can track the CRLB up to a SNR of 40dB.

Figure 4.5 shows the frequency estimate MSE as a function of SNR with α = 0.2.

53

−10 −5 0 5 10 15 20 25 30 35 40
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 4.5: Mean squared frequency estimation error of ZC estimator with α = 0.2.

−10 −5 0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 4.6: Mean squared phase estimation error of ZC estimator with α = 0.2.

54

Compared with Figure 4.3, the threshold is increased to 12.5dB. However, the gap between

the ZC estimator and the CRLB is smaller. For example, at 40dB, the ZC estimator with

α = 0.4 has a MSE about 7× 10−11. At the same time, the ZC estimator with α = 0.2 has

a MSE about 2× 10−11.

Figure 4.6 shows the phase estimate MSE as a function of SNR with α = 0.2. Compared

with Figure 4.4, the threshold is increases to 12.5dB. But the ZC estimator with α = 0.2

is closer to the CRLB. For example, at 40dB, the ZC estimator with α = 0.4 has a MSE

about 8× 10−7 in Figure 4.4. In Figure 4.6, the error is reduced to 5× 10−7.

In summary, when the hysteresis parameter α is reduced from 0.4 to 0.2, the threshold

of the estimation is increased. However, at the same time, the ZC estimator is closer to the

CRLB. Therefore, it is a trade-off to decide the value of the hysteresis parameter α.

4.4 Conclusion

This chapter proposes a new algorithm for the phase and frequency estimation of a single

tone complex observation in white noise. The proposed zero-crossing phase and frequency

estimator is based on the detection of zero crossing of the real and imaginary parts of the

complex observation and sequential least squares processing. Compared with other linear-

regression-based estimators, such as Tretter’s method and Kay’s method, the zero-crossing

estimator does not require any arctangent operations. In addition, the proposed estimator

provides low latency with the fact that phase and frequency estimates can be updated

sequentially as new zero crossings are detected.

55

Chapter 5

Zero Crossing Estimator

Refinements

The algorithm introduced in Section 4.1 is the fundamental algorithm of the zero-crossing

estimator. With some additional improvements and modifications, the performance of the

zero-crossing estimator can be improved significantly. In this section, three improvement

methods are introduced. The first refined estimator uses a new approach for interpolation

with better accuracy. The second approach uses a bandpass filter as the pre-processing. The

third approach uses the ZC estimator as the coarse search and the root-finding algorithm as

the fine search. For each new approach, we compute the mean squared frequency and phase

estimation errors as a function of SNR. Also, we compare the MSEs of the new approaches

with the fundamental approach. The numerical results show that all of the new approaches

have better performance.

5.1 Zero Crossing Estimator using Local Linear Regression

for Zero-crossings

Since the performance of the ZC estimator depends on the accuracy of the zero crossing

time estimates, the choice of the interpolation technique used to estimate the zero crossing

times is very important [26]. In Section 4.1.1, we discuss about using the simple linear

56

interpolation to estimate the time of crossing, i.e. (4.1) and (4.2). However, in this inter-

polation method, only two points are used. Hence, the accuracy of the interpolation is low.

A better interpolation method is proposed in this section.

In this new interpolation method, we use a local linear regression, which uses all of

the samples from the last sample above/below to the first sample below/above the hysteresis

threshold. Depending on the normalized frequency of the observation and the hysteresis

parameter, α, local linear regression can produce significantly better zero crossing time

estimates by exploiting the information contained in the samples between the hysteresis

thresholds.

Let’s recalled the example in Section 4.1.1, in order to estimate the time of the first zero

crossing by using this new method, we need to collect the sample indices and the associated

magnitudes and put into a coordinate set L. Therefore, when state machine of the imaginary

signal transitions from state 4 to state 1 at sample index n = 8, the coordinate set L is

L = {(tn1 ,={z[n1]}), (tn2 ,={z[n2]}), (tn3 ,={z[n3]}), (tn4 ,={z[n4]}), (tn5 ,={z[n5]})} (5.1)

where n1, n2, n3, n4, n5 are equal to 4, 5, 6, 7, 8 respectively, tni
= ni × T , and ={z[ni]} is

the imaginary part of the complex exponential signal z[n] at sample index ni. Now we can

apply the linear regression to the coordinate set L. Since this regression can be achieved

on a sample-by-sample basis, we can use the similar idea presented Section 4.1.2. Five new

tracking variables, Ã, B̃, C̃, D̃, and Ẽ, are set and updated as shown in (4.3). After the zero

crossing is detected, the intercept, b, and the slope, g, are estimated by using (5.2) and

(5.3).

b = intercept = − ẼÃ− C̃D̃

B̃Ã− C̃2
, and (5.2)

g = slope = − C̃

Ã
b− D̃

Ã
. (5.3)

Then, the time of crossing is (5.4)

t = − b

g
(5.4)

57

−10 −5 0 5 10 15 20 25 30 35 40
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 5.1: Mean squared frequency estimation error of ZC estimator via local linear inter-
polation with α = 0.4.

58

−10 −5 0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 5.2: Mean squared phase estimation error of ZC estimator via local linear interpo-
lation with α = 0.4.

59

5.1.1 Numerical Results and Discussion

Figure 5.1 and Figure 5.2 show the mean squared frequency and phase estimation errors

as a function of SNR for a complex observation. The simulation parameters are the same

as what we used in Section 4.3. For the interpolation, we use the local interpolation on

all the samples between the last sample above/below and the first sample below/above the

hysteresis threshold. Then the zero crossing time can be estimated. In this simulation, the

hysteresis threshold is α = 0.4.

Compared with Figure 4.3 and Figure 4.4, the performance of the ZC estimator us-

ing the new interpolation method is improved significantly. These results show that the

zero-crossing estimator provides frequency and phase estimates within about one dB of the

CRLB for 10 ≤ SNR ≤ 30dB. Above 30dB SNR, the zero-crossing estimator’s performance

continues to improve, but deviates from the CRLB due to the error of interpolation. How-

ever, compared with Figure 4.3 and Figure 4.4, the improvement is significant. For example,

in Figure 4.3, the mean squared frequency estimation error at 40dB is about 7× 10−11. For

the ZC estimator using the local interpolation technique, the error is reduced to a MSE

about 1× 10−11.

5.2 Zero Crossing Estimator using Pre-Filtered Observation

In many communication and signal processing applications, the central frequency is

known by both transmitter and receiver. For example, under IEEE 802.11g standard,

we know the central frequency of each channel. Therefore, a bandpass filter can be pre-

computed and used as the pre-processing of estimation. Since the noise is filtered, the

detection of the zero crossing is more accurate. Consequently, the accuracy of the ZC

estimator is improved.

5.2.1 Numerical Results and Discussion

Figure 5.3 and Figure 5.4 show the mean squared frequency and phase estimate errors

as a function of SNR for a complex observation. All the results assume an observation with

N = 513, sampling frequency fs = 16000 Hz, and the first sample time t0 = −256. The

60

−10 −5 0 5 10 15 20 25 30 35 40
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 5.3: Mean squared frequency estimation error of ZC estimator with α = 0.4 and a
64th order FIR filter.

61

−10 −5 0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 5.4: Mean squared phase estimation error of ZC estimator with α = 0.4 and a 64th
order FIR filter.

62

frequency is an independent random variable for a uniform distribution

ω0 ∼ U(1019 × 2π, 1021 × 2π). (5.5)

The phase is an independent random variable for a uniform distribution

θ0 ∼ U(−π, π). (5.6)

500 realizations of the complex exponential signal using (2.1) and AWGN are generated

with fixed b0 = 1. The hysteresis parameter of the ZC estimator is α = 0.4. Simple

linear interpolation is used in this simulation. In addition, a 64th order Finite Impulse

Response (FIR) filter is used to pre-process the observation. Therefore, the observation will

be filtered by the FIR filter and the output of the filter will be used for the estimation. In

this simulation, the passband of the bandpass filter is [920, 1120] Hz.

Compared with Figure 4.3 and Figure 4.4, the performance of the ZC estimator is

improved significantly. In Figure 5.3 and Figure 5.4, the threshold is decreased from a SNR

of 10dB to a SNR of 0dB, which is better than that of Tretter and Kay estimators. In

addition, the frequency and phase estimates within about one dB of the CRLB up to a

SNR of 40dB, which is much better than the fundamental ZC estimator without filter.

5.3 Zero Crossing Estimator using Non-Linear Iterative Method

In Chapter 3, we presented five approximate maximum likelihood estimators. The FFT-

Secant MLE, the FFT-Newton MLE, and the FFT-bisection MLE use the Fast Fourier

Transform (FFT) as the coarse search and different root-finding algorithms as the fine

search. Compared with FFT MLE, the performance of these three MLEs are improved

significantly due to iterative methods. However, the computation of the FFT is slow and

the FFT estimators require to know the entire observation before estimation. Therefore, the

latency may be too high for real-time application. Nevertheless, these estimators provide a

new idea which uses the ZC estimator as the coarse search and the root-finding algorithm

as the fine search.

63

In this new approach, we still implement the zero-crossing estimator as we proposed

in Section 4.1. After computing (4.4) and (4.5), the estimated frequency ω̂ZC are used

as the coarse search frequency estimate for the fine search. Then we can use the Secant

Method, as the fine search, to find the root of F
′

(ω) in (3.18) because it has fast convergence

speed and needs less computation. In the example shown in Section 3.3, only two steps are

required to converge with error tolerance ε = 10−4. Now the initial values of the Secant

Method are ω̂(0) = ω̂ZC and ω̂(1) = ω̂ZC −∆ω, where ∆ω is a very small real number. As

shown in Figure 4.3, the error of ZC estimator is very small. Thus, we can ensure that the

initial points we pick are sufficiently close to the root. Consequently, we can ensure the

convergence of the iteration. One thing we should notice is that in this approach, we do not

need to compute the FFT. Therefore, the computational complexity of this new approach

is less than the FFT-based MLEs. The algorithm of the Secant Method is shown Algorithm

1. The converged value will be ω̂ZC−Secant and finally we can compute θ̂ZC−Secant by using

(5.7)

θ̂ZC−Secant = ∠{exp(−jω̂ZC−Secantt0)A(ω̂ZC−Secant)}. (5.7)

5.3.1 Numerical Results and Discussion

Figure 5.5 and Figure 5.6 show the mean squared frequency and phase estimation errors

as a function of SNR for a complex observation. All the results assume an observation

with N = 513, sampling period T = 1 second, and the first sample time t0 = −256. The

frequency is an independent random variable for a uniform distribution

ω0 ∼ U(0.09 × 2π, 0.11 × 2π). (5.8)

The phase is an independent random variable for a uniform distribution

θ0 ∼ U(−π, π). (5.9)

500 realizations of the complex exponential signal using (2.1) and AWGN are generated

with fixed b0 = 1. The hysteresis parameter of the ZC estimator is α = 0.4. The Secant

64

−10 −5 0 5 10 15 20 25 30 35 40
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

SNR (dB)

m
ea

n
sq

ua
re

d
fr

eq
ue

nc
y

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 5.5: Mean squared frequency estimation error of ZC estimator via the Secant Method
with α = 0.4.

65

−10 −5 0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

m
ea

n
sq

ua
re

d
ph

as
e

es
tim

at
io

n
er

ro
r

zero−crossing
Tretter/Kay with exact atan2
Tretter with approx atan2
Kay with approx atan2
CRLB

Figure 5.6: Mean squared phase estimation error of ZC estimator via the Secant Method
with α = 0.4.

66

Method is used as the post-processing of estimation. The error tolerance is ε = 10−4. The

initial values of the Secant Method are ω̂(0) = ω̂ZC and ω̂(1) = ω̂ZC − 5× 10−4.

Compared with Figure 4.3 and Figure 4.4, the zero-crossing estimator with non-iterative

method has much better performance. Although the threshold of estimation remains the

same, the new approach has smaller mean squared error. As shown in Figure 5.5 and Figure

5.6, the new approach tracks the CRLB up to a SNR of 40dB.

5.4 Conclusion

In this chapter, we propose three improved approaches for the zero-crossing estimator.

Compared with the mean squared frequency and phase estimation errors given in Figure

4.3 and Figure 4.4, all of the new approaches have better performance. Compared with

the fundamental zero crossing estimator in Section 4.1, the first approach uses a local

interpolation to improve the performance. Rather than using the two points to estimate

the zero crossing time, the new interpolation algorithm uses all the points between the last

sample above/below and the first sample below/above the hysteresis threshold to locate

the time of zero crossing via a local linear interpolation. The numerical results show that

the gap between the MSE and the CRLB is smaller than the fundamental estimator. The

second approach uses a filter to improve the SNR. In the example we demonstrated, a

64th order FIR bandpass filter is used to reduce the power of noise. The numerical results

show that compared with the fundamental approach and the ZC estimator with accurate

interpolation, the ZC estimator with filter has a smaller threshold and MSEs. The third

approach is using a root-finding algorithm as the fine search to improve the performance of

the fundamental estimator. Although the threshold of this new method remains the same

as the fundamental method, this approach has the least MSE among all the zero-crossing

estimation refinements. The numerical results show that the estimator tracks the CRLB

up a high SNR of 40dB.

Among all of the improvements, many common applications will benefit from the second

one, which is uses the filter to pre-process the samples as they arrive. As what we will be

discussed in the following chapter, this approach can be implemented in a sequential way

67

by using the circular buffer [27]. Although the ZC estimator with accurate interpolation

can be applied in a real-time application as well, the performance of this estimator is worse

than that of the one with filter. For the ZC estimator with non-linear iterative method,

although the number of iterations is low, the function evaluation of F
′

(ω) is not efficient.

Also, this approach may fail without the prior knowledge about the SNR of communication

channel.

68

Chapter 6

A Software-Defined-Radio

Implementation of Time-Slotted

Round-Trip Carrier

Synchronization for Distributed

Beamforming via Zero-Crossing

Estimation

Transmit beamforming is an energy-efficient communication technique in which a trans-

mitter sends a beacon over two or more antennas and aligns the phases of the transmissions

across the antennas such as, after propagation, the signals combine constructively at the

intended direction [5]. The recent idea about achieving transmit beamforming has been

extended from a single antenna array to a network of cooperating single-antenna sources

which behave in a distributed fashion, which is described as the distributed beamforming.

Unlike conventional transmit beamforming, each single-antenna transmitter has its local

oscillator, which is independent from other source nodes and also imperfect. Therefore, in

69

order to achieve beamforming at the destination in the desired direction, the carrier phase

and frequency synchronization among the transmitter nodes is necessary [17].

In [28], the round-trip carrier synchronization algorithm was proposed for the carrier

synchronization of the distributed beamforming. This algorithm uses the equivalence of

round-trip propagation delays through a multihop chain of source nodes to achieve phase and

frequency synchronization [17, 28]. [17] and [20] show an experiment of implementing the

round-trip carrier synchronization by using software-defined radios (SDRs). The experiment

includes two-source synchronization and three-source synchronization in both wired channel

and acoustic channel. The hybrid Phase Locked Loop (PLL) is used for estimating unknown

parameters. A two-source round-trip model is shown in Figure 6.1.

Figure 6.1: Time-slotted round-trip carrier synchronization system with two source nodes.

As shown in Figure 6.1, the fundamental concept of this algorithm is that an unmod-

ulated carrier transmitted by the destination node and “bounced” around the clockwise

circuit will incur the same total phase shift as an unmodulated carrier transmitted by the

destination node “bounced” around the counter-clockwise circuit. In practice, the “bounc-

ing” of carrier can be performed actively by having each source estimated the unknown

parameters of the received beacon transmitted by other nodes. Then each source transmit-

70

ted a periodic extension of the signal received in a previous timeslot. Coherent combing

is achieved since the destination is receiving the sum of two carriers, modulated by the

common message, after they have propagated through circuits with identical phase shifts.

In the algorithm above, each node estimates the frequency and phase of the received

signal in a specific timeslot. In order to reduce the total time for synchronization, a fast

frequency and phase estimator is required for each timeslot. Therefore, a sequential estima-

tor satisfies such requirement. Hence, we implement the proposed zero-crossing phase and

frequency estimator in the time-slotted round-trip carrier synchronization and analyse the

performance of this estimator in a wired channel.

In our implementation, we will use the methodology for the two-source case in wired

channel discussed in [17]. The following sections will introduce the protocol of two source

nodes synchronization system. Then the specific timeslot schedule and the map of equip-

ment connection are given. In addition, the C functions of each key component of the

round-trip synchronization system are discussed. Finally, the test results will be analysed

and compared with the results from [17].

6.1 Two-Source Synchronization

As illustrated in [17], in a two-source system, there are four timeslots for the round-trip

synchronization protocol. Among them, the first three slots are used for synchronizing the

local oscillator of each node and the last slot is used for beamforming.

TS(0) : The destination node transmits the sinusoidal primary beacon to both source nodes.

Both source nodes estimate phase and frequency from their local observation, denoted

as θ̂0i and ω̂0i, respectively, at source node Si for i ∈ {1, 2}.

TS(1) : Source node S1 transmits a sinusoidal secondary beacon to source node S2. This

secondary beacon is transmitted as a periodic extension of the beacon received in

TS(0). S2 estimates local phase and frequency from this received observation which

are denoted by θ̂12 and ω̂12, respectively.

TS(2) : Source node S2 transmits a sinusoidal secondary beacon to source node S1. This sec-

71

ondary beacon is transmitted as a periodic extension of the beacon received in TS(0),

with initial phase extrapolated from the phase and frequency estimates obtained by

S2 in TS(0). S1 generates local phase and frequency estimates from this observation

denoted as θ̂21 and ω̂21, respectively.

TS(3) : Both sources transmit simultaneously to the destination as a distributed beamformer.

The carrier frequency of each source is based on both local frequency estimates ob-

tained in the prior timeslots. The initial phase of the carrier at each source is ex-

trapolated from the local phase and frequency estimates from the secondary beacon

observation.

6.2 Experimental Methodology for Two-Source Test inWire-

Connected Channel

Each source node in the wired two-source time-slotted round-trip carrier synchroniza-

tion system is implemented by using one Taxes Instrument TMS320C6713DSK board at

a sampling frequency 16kHz. Besides the DSK boards, the experiment kit also includes

a CD player (SONY CD Walkman D-CJ01), a Behringer EURORACK UB1201 Mixer, a

Tektronix TDS 3014 oscilloscope, a Marntz PMD 661 solid state recorder, various RCA,

BNC connectors, and cables for connecting between the electronic computers’ inputs and

outputs. The whole system is shown in Figure 6.2.

According to the discussion in Section 6.1, after the estimation, each source node needs

to keep its estimates for transmission. Therefore, we put the estimates in holdover. In

addition, each node needs to estimate the unknown parameters twice in the two-source

system. Therefore, we set two estimators and two holdovers on each node and they can

operate simultaneously.

The detector for the first beacon, the round-trip protocol, and the ZC estimator are

implemented by programming the TMS320C6713DSK in C language using Texas Instru-

ment’s Code Composer Studio integrated development environment. Each source node runs

the system independently and there is not connection between each two nodes. The “des-

72

Figure 6.2: Implementation block diagram of the two-source time-slotted round-trip carrier
synchronization system where the blue and green lines each represents a different signal
wired path

73

tination node” was created by using the CD player for playing primary beacon, as well as

the recorder for recording the beacons. An oscilloscope was connected to the output of the

recorder for real-time monitoring. Each test is a complete execution of the 4 timeslots of the

round-trip protocol. At the beginning, each source node enters into a state where it waits

for the primary beacon. Once the primary beacon is detected, the nodes start to execute

the round-trip protocol according to the schedule shown in Table 6.1.

Timeslot Time S1 S2

TS0

0.00s detect primary beacon detect primary beacon
0.00-0.10s wait wait
0.10-0.60s update tracking variables of ZC1 update tracking variables of

ZC1
0.6s estimate frequency and phase for ZC1 estimate frequency and phase

for ZC1
0.60-1.25s holdover ZC1 holdover ZC1

TS1

1.25-1.35s transmit holdover ZC1 holdover ZC1
1.35-1.85s transmit holdover ZC1 holdover ZC1 and update track-

ing variable of ZC2
1.85s transmit holdover ZC1 estimate frequency and phase

for ZC2 and holdover ZC1
1.85-2.25s transmit holdover ZC1 holdover ZC1 and ZC2
2.25-2.50s wait holdover ZC1 and ZC2

TS2

2.50-2.60s wait transmit holdover ZC1; also
holdover ZC2

2.60-3.10s update tracking variables of ZC2 transmit holdover ZC1; also
holdover ZC2

3.10 estimate frequency and phase for ZC2 transmit holdover ZC1; also
holdover ZC2

3.10-3.50s holdover ZC2 transmit holdover ZC1; also
holdover ZC2

3.50-3.80s holdover ZC2 holdover ZC2

TS3
3.80-5.80s transmit holdover ZC2 transmit holdover ZC2
5.80-6.80s clear state clear state
6.80s re-arm primary beacon detector re-arm primary beacon detector

Table 6.1: Two-source round-trip synchronization protocol timing. After detection of the
primary beacon, each node keeps time using its sample clock running at 16 kHz.

74

6.3 Zero-Crossing Estimator Implemented on Source Node

The round-trip protocol and the ZC estimator are implemented on the TMS320C6713DSK

board via C language. Based on the architecture and the design of the TMS320C6713DSK

board, when a new sample arrives, the interrupt service routine (ISR) will be executed [29].

Therefore, the number of execution is equal to the sampling frequency in one second. In

order to implement the sequential estimation, all the C codes are included in the ISR. Be-

cause of two estimators and two holdovers, all the estimation variables, such as the tracking

variables and the estimates, are stored in array and indicated by the index of the estimator.

The following parts will give detailed discussion of the implementations of the round-trip

time table, the FIR filter, and the zero-crossing estimator. The competed code is presented

in Appendix.

6.3.1 Implementation of the Round-Trip Time Table

According to Table 6.1, the two-source round-trip synchronization protocol is divided

into four timeslots. There is a global variable called TS, which is used to identify the

timeslot. Since the ISR is executed when a new sample is arrived, in each time slot, we

use a unsigned integer counter to track the time. The variable counter is increased by one

when the ISR is executed. The time of each event is pre-loaded and we compare counter

with the pre-loaded schedule in each ISR call. Once they are equal, we will change to next

event. Here is an example of how to implement it in Time Slot 0 (TS0).

1

2 // de f i n e time f o r each event

3

4 const unsigned int s t a r t s l o t = 0 ; // s t a r t o f time s l o t

5 const unsigned int s t a r t l i s t e n = 1600; // s t a r t to l i s t e n @ 0.1 s

6 const unsigned int s t o p l i s t e n = 9600; // s top to l i s t e n @ 0.6 s

7 const unsigned int end s l o t = 20000; //end o f time s l o t @ 1.25 s

8 const unsigned int s t a r t p l a y = 0 ; // s t a r t to p lay

9 const unsigned int s top p lay = 16000; // s top to p lay @ 1s

75

10

11 //end

12

13 // schedu l e p ro t o co l

14 i f ((counter < s t a r t l i s t e n)&&(counter>=s t a r t s l o t)) // 0.1 s wai t

15 {
16 // wai t

17 counter++;

18 }
19 // 0.5 s t rack

20 else i f ((counter >= s t a r t l i s t e n)&&(counter < s t o p l i s t e n))

21 {
22 // update t r a c k i n g v a r i a b l e f o r ZC1

23 counter++;

24

25 }
26 else i f (counter == s t o p l i s t e n)

27 {
28 // es t imate f requency and phase f o r ZC1

29

30 counter++;

31 phase updater (0) ;

32 }
33 else i f ((counter > s t o p l i s t e n) && (counter < end s l o t))

34 {
35 // ho ldove r ZC1

36 counter ++;

37 }
38 else i f (counter == end s l o t)

76

39 {
40 // ho ldove r ZC1

41 TS++; // change to next time s l o t

42 counter = 0 ;

43 }

6.3.2 Implementation of Zero-Crossing Estimator

The implementation of zero crossing estimator includes four part: the state machine,

the interpolation, the update of tracking variables, and the estimation based on tracking

variables. The first three components are implemented sequentially. They are executed

when a new sample arrives. The last component, the estimation, is only called at 0.6

second.

Implementation of State Machine

As discussed in Section 4.1, each received sample will be sent to the state machine and

compared with the hysteresis parameter α. Since the transmitted beacon is sinusoid signal,

therefore, only one state machine is needed. We use the if-else statement to implement the

state machine. Once the zero crossing is detected, the time and the phase will be generated

at first based on Table 4.1. Then the tracking variables will be updated according to (4.3).

Here is an example of showing the State 3 in C code.

1 i f (s t a t e [ZCnum] == 3)

2 {
3 i f (input > A)

4 {
5 // t r an s i t i o n to s t a t e 1

6 }
7 else i f ((input > A i) && (input < A))

8 {
9 // s tay in s t a t e 3

77

10 }
11 else i f (input < A i)

12 {
13 // d e t e c t zero−c ro s s i n g

14

15 // compute time and phase v ia

16 // s imple l i n e a r i n t e r p o l a t i o n

17

18 // update the t r a c k i n g v a r i a b l e s

19 // t r an s i t i o n to s t a t e 2

20

21 }
22 }

Implementation of Simple Linear Interpolation

In order to estimate the time of zero crossing, we implement the simple linear interpo-

lation on the last sample above the upper hysteresis parameter and the first sample below

the lower hysteresis parameter, which has been presented in Section 4.1. In the software

implementation, we use two variables to track these two samples. Once a zero crossing is

detected, we apply either (4.1) or (4.2) to estimate the time. The phase of the zero crossing

is decided according to Table 4.1. Here is an example of showing linear interpolation in

State 3.

1

2 // I n t e r p o l a t i o n

3 s l op e = (i 2 v a l u e [ZCnum] − i 1 v a l u e [ZCnum]) ∗ f s ;

4 temp = i2 [ZCnum] − i 1 [ZCnum] ;

5 s l op e = s l op e / (double) (temp) ;

6 zt [ZCnum] = (double) i 1 [ZCnum]∗ i n v f s ;

7 zt [ZCnum] = zt [ZCnum] − i 1 v a l u e [ZCnum]/ s l op e ;

78

8 //END of i n t e r p o l a t i o n

9

10 n [ZCnum]++; // update number o f zero c ro s s i n g s

11

12 //Decide phase

13 i f (n [ZCnum]>=2)

14 {
15 ph [ZCnum] = ph [ZCnum] + pi ;

16 }
17 else ph [ZCnum] = pi ;

18

19

20 // s h i f t to s t a t e 2

21 s t a t e [ZCnum]= 2 ;

Implementation of Updating Tracking Variables

The tracking variables are initialized to zero before starting the estimation process. In

the process, the tracking variables are updated when a zero crossing is detected. Then the

tracking variables will be updated according to (4.3). Here is a C function for updating

tracking variables.

1 void ZC updatepar (unsigned short ZCnum)

2 {
3 AA[ZCnum] = AA [ZCnum]+ zt [ZCnum]∗ zt [ZCnum] ;

4 BB[ZCnum]++;

5 CC[ZCnum] = CC[ZCnum] + zt [ZCnum] ;

6 DD[ZCnum] = DD[ZCnum] − zt [ZCnum]∗ ph [ZCnum] ;

7 EE[ZCnum] = EE[ZCnum] − ph [ZCnum] ;

8 }

79

Implementation of Frequency and Phase Estimation

After receiving 0.5 second beacon, the frequency and phase estimates are computed

based on the tracking variables. (4.4) and (4.5) are used to estimate the frequency and

phase. The C code for estimating unknown parameters is listed as:

1 void ZC est imation (unsigned short ZCnum)

2 {
3 d e l t a [ZCnum] = BB[ZCnum]−CC[ZCnum]∗CC[ZCnum]/AA[ZCnum] ;

4 phhat [ZCnum] = −(EE[ZCnum]−CC[ZCnum]∗DD[ZCnum]/AA[ZCnum])

5 / d e l t a [ZCnum] ;

6 fhat [ZCnum] = −CC[ZCnum]/AA[ZCnum]∗ phhat [ZCnum]−
7 DD[ZCnum]/AA[ZCnum] ;

8 }

6.3.3 Implementation of Holdover

For each node, the a sinusoid beacon is generated based on the estimates and transmitted

to other nodes. As we discussed before, the transmitted beacon is a periodic extension of

the received beacon. Therefore, the phase, φ = ω̂nT + θ̂, is a large number since n is large.

In order to avoid overflow of using the C standard math function sin, we need to keep φ

within the range [0, 2π]. Hence, the unwrapping algorithm is needed. However, it is not

efficient to unwrap a large φ. Thus, we unwrap the phase φ under holdover mode. The

listing below shows the C function for updating phase in holdover mode.

1 void phase updater (unsigned short ZCnum)

2 {
3 phase [ZCnum] = phase [ZCnum] + fhat [ZCnum]∗ i n v f s ;

4

5 // phase unwrap

6 while (phase [ZCnum] > 2∗ p i)
7 phase [ZCnum] = phase [ZCnum] − 2∗ p i ;
8 while (phase [ZCnum] < 0)

80

9 phase [ZCnum] = phase [ZCnum] + 2∗ p i ;
10 }

6.3.4 Implementation of FIR Filter

For the FIR bandpass filter, we use the Matlab to compute the filter coefficients and

pre-load them to the DSK. The discrete-time convolution is

y[n] =
∞
∑

k=−∞

x[k]h[n − k] (6.1)

where y[n] is the output of a linear, time-invariant, discrete-time system (LTI), x[n] is the

input, and h[n] is the unit pulse response. By using the circular buffers, we can implement

this convolution in sequence [27]. Here is an example of implementing the FIR filter via the

circular buffers.

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FIR F i l t e r ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2

3 i f (cont == BL)

4 cont= 0 ;

5

6 // wr i t e s data in r i g h t channel i n t o b u f f e r

7 f i l t e r [cont] = read ing ;

8

9 j = 0 ;

10 input = 0 ;

11

12 for (i = cont ; i>= 0 ; i−−)
13 {
14 input += B[j]∗ f i l t e r [i] ;

15 j++;

16 }

81

17

18 for (i = BL−1; i>cont ; i−−)
19 {
20 input += B[j]∗ f i l t e r [i] ;

21 j++;

22 }

In the example above, array B stores the filter coefficients, BL is the order of filter, and

array filter with size BL stores the last BL received samples.

6.4 Data Analysis Methodology

As discussed in [17], the round-trip synchronization system has multipath channels.

Therefore, each source node should delay tracking the beacon until the transient effects of

the channel have become negligible. Then, during the steady-state portion of the observa-

tion, the source node starts the tracking process and sends the received samples to the state

machine for zero crossing detection. The estimates are put into holdover mode prior to the

end of the steady-state portion of the beacon. This is illustrated in Figure 6.3.

beacon

detected

ZC estimation

begins

ZC estimation ends

(holdover)

transient transient

envelop of beacon

steady-state

Figure 6.3: Effect of multipath on ZC estimation and holdover.

For the experiment with N wired beamforming tests, the uncompressed .wav recording

82

of the experiment was transferred to a PC and analysed in MATLAB to generated the

statistical results. The “power ratio” ρ of the beamformer is calculated by estimating the

power received during beamforming [17]. A power ratio of one means an ideal beamformer

without any frequency offset and phase offset. A power ratio of zero corresponds to the

case where the carriers completely cancel at the destination. In two source nodes system,

the formula for computing power ratio is

ρ[n] =

(

b̂bf0 [n]

b̂120 [n] + b̂210 [n]

)2

. (6.2)

The amplitude estimates in each test are obtained via the FFT-Secant MLE described in

Section 3.3.

6.5 Experimental Results

Three wired-channel experiments were performed and the experimental results can be

founded in Table 6.2. In this test, the central frequency of the beacon is 1020Hz. The

Variable Experiment 1 Experiment 2 Experiment 3

Min(ρ) 0.9996 0.9995 0.9990
Max(ρ) 1.0000 1.0000 1.0000
Mean(ρ) 0.9998 0.9998 0.9997
Std(ρ) 7.5866e − 5 1.1948e − 4 2.2029e − 4

Table 6.2: Experimental results of two-source wired-channel tests. Each experiment con-
sisted of 100 distributed beamforming tests.

sampling frequency is 16000Hz. For the zero-crossing estimator, the hysteresis parameter is

0.2. A bandpass FIR filter with 64 orders is used. The passband of the filter is [920, 1120]Hz.

The filter coefficients are generated by Matlab. Each experiment contains 100 tests.

Compared with the proposed experimental results in [17], our proposed estimator has

much better results. The minimum and mean of the power ratios are larger than those of

the PLL estimator. In addition, our power ratio is more consistent. The worst case of ZC

estimator is still 10 times better than the best case of PLL estimator.

83

Chapter 7

Conclusion

In the first part of this thesis we discussed two classes of maximum likelihood esti-

mation. The first category discussed is FFT-based maximum likelihood estimation (FFT

MLE). We based our discussion on the FFT MLE given by Rife and Boorstyn in [8]. The

numerical results show that their estimator can only achieve the CRLB at 60dB SNR with

a large value of M . In order to reduce the computational complexity, we proposed and dis-

cussed four refined approximate maximum likelihood estimators, the FFT-Quad estimator,

the FFT-Secant estimator, the FFT-Newton estimator, and the FFT-bisection estimator.

The numerical results show that for the small value of M , all the refinements can provide

better performance. Also, the refinements can achieve the CRLB at 60dB SNR with less

computational complexity.

The second part of this thesis proposed a new linear-regression-based maximum likeli-

hood estimator called the Zero-Crossing Phase and Frequency Estimator. Compared with

the well-known estimators in this category, Tretter’s estimator [13] and Kay’s estimator

[14], our proposed estimator has similar performance. In addition, the computational com-

plexity of our approach is less than the others for two main reasons. First, instead of using

every received sample, our approach only uses the zero crossings. Second, our approach

avoids the arctangent operation since the phase of each zero crossing is known. The re-

finements of the zero-crossing estimator show better performance than that of Tretter’s

and Kay’s estimators. Finally, our estimator is implemented in the time-slotted round-trip

84

carrier synchronization system of distributed beamforming using software-defined-radios.

Compared with the published results in [17], which use the hybrid Phase Lock Loop as the

estimator, our estimator has better and more consistent results.

There are many potential future research opportunities that stem from this thesis. One

such opportunity improves the accuracy of interpolation. Although both the simple inter-

polation and the local linear regression have given a good performance, at high SNR, the

error of interpolation causes the mean squared errors to deviate from the CRLB. Therefore,

a more accurate algorithm is needed to find the time of each zero crossing.

85

Appendix A

The Specification of Computer and

Matlab for Simulation

A.1 The Specification of Computer for Simulation

Table A.1: The Specification of simulation computer

Operation System (OS) 32-bit Microsoft Windows 7 Enterprise

Processor Two Intel(R) Core(TM) i7 870 processors with 2.93GHz

Number of Threads 8

Memory 4GB

A.2 The Specification of Matlab Software for Simulation

Table A.2: The Specification of Matlab

Version 7.11.0.584 (32-bit)

Maximum Possible Array 1249MB

Memory Available for All Arrays 1417MB

86

Appendix B

Source Code of the TMS320C6713

Source Node in the Two-Source

System

The following C code is the software implementation of the two-source time-slotted

round-trip carrier synchronization system. When the switch 1 on the board is pressed, the

DSK board performs as source node 1, whereas switch 2 corresponds to source node 2.

1 /* z_c.c by Yizheng Liao 12-OCT -2010 */

2

3 /*

4 This program is used to implement the two -source time -slotted

5 round -trip carrier synchronization system. The C code is loaded to

6 TMS320C6713 Digital Signal Processing Kit (DSK). When the switch 1

7 on the DSK is pressed , the board performs as source node 1. When

8 switch 2 is pressed , the board performs as source node 2.

9 */

10

11 /* Defines */

12 #define CHIP_6713 // define the chip

13 #define thresh 0.2 // hysteresis parameter

14 #define bz 80 // size of detector buffer

15 #define N 2 // Number of node

87

16 #define PI 3.141592654 // phi

17

18 /* Header Files */

19 #include <stdio.h>

20 #include <stdlib.h>

21 #include <math .h>

22 #include <c6x.h>

23 #include <csl.h>

24 #include <csl_mcbsp .h>

25 #include <csl_irq.h>

26

27 // DSK Configuration Files

28 #include "dsk6713.h"

29 #include "dsk6713_aic23 .h"

30 #include "fastrts67x .h"

31

32

33 // contains coeff of filter

34 #include "FIRcoeff .h"

35

36 extern const int BL;

37 extern const double B[65];

38

39 /* Codec Configurations */

40 DSK6713_AIC23_CodecHandle hCodec;

41 // Codec configuration with default settings

42 DSK6713_AIC23_Config config = DSK6713_AIC23_DEFAULTCONFIG;

43

44

45

46

47 /* ******** Global constant ************** */

48

49 /* *************** Time Table for Each Time Slot ****************** */

50 /* For TS0 , TS1 , TS2 */

51

52 // start of time slot

88

53 const unsigned int start_slot = 0;

54

55 // start to listen @ 0.1s

56 const unsigned int start_listen = 1600;

57

58 // stop to listen @ 0.6s

59 const unsigned int stop_listen = 9600;

60

61 // end of time slot @ 1.25 s

62 const unsigned int end_slot = 20000;

63

64 // start to play

65 const unsigned int start_play = 0;

66

67 // stop to play @ 1s

68 const unsigned int stop_play = 16000;

69

70 /* For TS3 */

71

72 // start of time slot

73 const unsigned int start_slot_last = 0;

74

75 // wait 0.05 s before playing

76 const unsigned int start_play_last = 800;

77

78 // 160800; // play 10s

79 const unsigned int stop_play_last = 32800;

80

81 // 180000;

82 const unsigned int end_slot_last = 48800;

83 // wait 1.2s for end of time slot

84

85 const double pi = PI;

86 const double fs = 16000.00; // sampling frequency

87 const double A = thresh;

88 const double A_i = -thresh;

89 const double max = 32767;

89

90 const double det_sum = 0.01; // threshold for signal detector

91

92

93 /* Global Variables and Initializations */

94

95 /* FOR each Zero -Crossing estimator */

96

97 // threshold index

98 unsigned int i1[N], i2[N];

99

100 // sample asscoiated to threshold index

101 double i1_value [N], i2_value [N];

102

103 // tracking variables

104 double AA[N], BB[N], CC[N], DD[N], EE[N],delta[N];

105

106 // zero corssing time and phase

107 double zt[N], ph[N];

108

109 // observation index , state of state machine

110 unsigned int n[N], ind[N], state[N];

111

112 // estimates

113 double fhat [N], phhat[N];

114

115 // max of input beacon

116 double peak [N];

117

118 //1/ peak

119 double scale[N];

120

121 /* FOR FIR Filter */

122

123 // Buffer for filter count

124 unsigned int cont ;

125

126 // buffer for filter , size 65

90

127 double filter [65];

128

129 /* FOR Detector */

130

131 // 0.5 ms for detection

132 double detect_buffer [bz];

133

134 // detection index

135 int detector_index ;

136

137 // sum of detection

138 double detector_sum = 0;

139

140

141 /* Other Parameters */

142 double inv_max ;

143 unsigned int counter;

144 unsigned int start;

145 double inv_fs;

146 unsigned short TS;

147 unsigned short node ;

148 double acme ;

149

150 /* Functions */

151 interrupt void serialPortRcvISR (void);

152 void ZC_track (double input , unsigned short ZCnum);

153 void ZC_updatepar (unsigned short ZCnum);

154 void ZC_init (unsigned short ZCnum);

155 void ZC_estimation (unsigned short ZCnum);

156 double ZC_play (unsigned short ZCnum);

157 void phase_updater (unsigned short ZCnum);

158

159 void main ()

160 {

161 int i = 0;

162

163 DSK6713_init (); // Initialize the board support library

91

164 DSK6713_DIP_init (); // Initializes DIP switches

165 DSK6713_LED_init (); // Initializes LEDs

166

167 hCodec = DSK6713_AIC23_openCodec(0, &config); // Open the codec

168

169 // Configure buffered serial port for 32-bit operation

170 // This allows transfer of both right and left channels

171 // in one read /write

172 MCBSP_FSETS (SPCR1 , RINTM , FRM);

173 MCBSP_FSETS (SPCR1 , XINTM , FRM);

174 MCBSP_FSETS (RCR1 , RWDLEN1 , 32 BIT);

175 MCBSP_FSETS (XCR1 , XWDLEN1 , 32 BIT);

176

177 // set the sampling rate

178 DSK6713_AIC23_setFreq (hCodec , DSK6713_AIC23_FREQ_16KHZ);

179

180

181 // Initialize right and left channel buffers with zeros

182 // So no garbage is in the channel buffers

183 for (i = 0; i < BL; i++)

184 {

185 filter[i] = 0;

186 }

187

188

189

190 for (i = 0; i < bz; i++)

191 {

192 detect_buffer [i] = 0.0;

193 }

194

195

196

197 inv_max =1 / max;

198 inv_fs = 1/ fs;

199 ZC_init (0);

200 ZC_init (1);

92

201 start = 0;

202 detector_index = 0;

203 detector_sum = 0;

204 counter = 0;

205 cont = 0;

206 acme = 0;

207

208

209 // Globally disables interrupts

210 IRQ_globalDisable ();

211 // Enables the NMI interrupt

212 IRQ_nmiEnable ();

213 // Maps an event to a physical interrupt

214 IRQ_map (IRQ_EVT_RINT1 , 15);

215 // Enables the event

216 IRQ_enable (IRQ_EVT_RINT1);

217 // Globally enables interrupts

218 IRQ_globalEnable ();

219

220 // decide the node number

221 if (DSK6713_DIP_get (1) == 0)

222 {

223 node = 1;

224 }

225 else if (DSK6713_DIP_get (2) == 0)

226 {

227 node = 2;

228 }

229 else node = 0;

230 DSK6713_LED_on (node);

231

232 // Infinite Loop

233 while (1)

234 {

235

236 }

237

93

238 }

239

240 interrupt void serialPortRcvISR ()

241 {

242 union {Uint32 combo; short channel [2];} data ;

243 short i = 0, j;

244 double input = 0;

245 double output = 0;

246 double reading ;

247 /* ***********************************Read input sample *************************/

248 // Read L+R channels

249 data .combo = MCBSP_read (DSK6713_AIC23_DATAHANDLE);

250 reading = (double)data .channel [0]* inv_max ;

251 if (acme < reading)

252 acme = reading;

253

254

255

256 /* ******************************FIR Filter ************************/

257

258 if (cont == BL)

259 cont = 0;

260

261 // writes data in right channel into buffer

262 filter[cont] = reading ;

263

264 j = 0;

265 input = 0;

266

267 for (i = cont; i>= 0; i--)

268 {

269 input += B[j]* filter[i];

270 j++;

271 }

272

273 for (i = BL -1;i>cont ;i--)

274 {

94

275 input += B[j]* filter[i];

276 j++;

277 }

278

279 cont ++;

280

281 /* ******************************FIR Filter END ***********************/

282

283

284 if (start == 0)

285 {

286

287 /* *********************************DETECTOR ********************* */

288

289 detect_buffer [detector_index] = input*input;

290

291

292

293

294 if (detector_index < 79)

295 {

296 detector_sum = detector_sum +

297 detect_buffer [detector_index] -

298 detect_buffer [detector_index +1];

299 detector_index ++;

300 }

301 else

302 {

303 detector_sum = detector_sum +

304 detect_buffer [detector_index] -

305 detect_buffer [0];

306 detector_index = 0;

307 }

308

309

310

311 if (detector_sum > det_sum)

95

312 {

313 counter = 0;

314 start = 1;

315 ZC_init (0);

316 ZC_init (1);

317 TS = 0;

318 }

319

320 }

321

322 /* *********************************DETECTOR END ********************* */

323

324 /* *****************************State Machine ************************/

325 else

326 {

327 if(TS == 0) // time slot 0

328 {

329 if ((counter <start_listen)&&(counter >= start_slot)) // 0.1s wait

330 {

331 if (counter < 80)

332 {

333 detect_buffer [counter] = 0;

334 }

335 if (input > peak [0])

336 {

337 peak [0] = input;

338 scale [0] = 1/ peak [0];

339 }

340 counter ++;

341 }

342 else if ((counter >= start_listen) && (counter < stop_listen))

343 // 0.5s track

344 {

345 ZC_track (input ,0);

346 counter ++;

347 // ind [0]++;

348

96

349 }

350 else if (counter == stop_listen)

351 {

352 ZC_estimation (0);

353 counter ++;

354 ind [0]++;

355 }

356 else if ((counter > stop_listen) && (counter < end_slot))

357 {

358 ind [0]++;

359 counter ++;

360 }

361 else if (counter == end_slot)

362 {

363 ind [0]++;

364 TS ++;

365 counter = 0;

366 }

367 }

368 else if (TS == 1) // time slot 1

369 {

370 if (node == 1)

371 {

372 if ((counter >= start_play) && (counter <= stop_play))

373 {

374

375 output = ZC_play (0);

376 data .channel [0] = (short)(output *32000);

377 data .channel [1] = data .channel [0];

378 counter ++;

379 ind [0]++;

380 phase_updater (0);

381

382 // Write L+R channels

383 MCBSP_write (DSK6713_AIC23_DATAHANDLE , data .combo);

384 }

385 else if ((counter > stop_play) && (counter < end_slot))

97

386 {

387 counter ++;

388 }

389 else if (counter == end_slot)

390 {

391 counter = 0;

392 TS ++;

393 }

394 }

395 else if (node == 2) // time slot 2

396 {

397 if ((counter <start_listen)&&(counter >= start_slot))

398 // 0.1s wait

399 {

400 if (input > peak [1])

401 {

402 peak [1] = input;

403 scale [1] = 1/ peak [1];

404 }

405 counter ++;

406 ind [0]++;

407 phase_updater (0);

408 }

409 else if ((counter >= start_listen) && (counter < stop_listen))

410 // 0.5s track

411 {

412 ZC_track (input ,1);

413 counter ++;

414 ind [0]++;

415 phase_updater (0);

416

417 }

418 else if (counter == stop_listen)

419 {

420 ZC_estimation (1);

421 counter ++;

422 phase_updater (0);

98

423 phase [1] = (double)ind [1]* inv_fs*fhat [1] + phhat [1];

424 phase [1] = phase [1] - 2*pi *510;

425 while (phase [1] > 2*pi)

426 phase [1] = phase[1] - 2*pi;

427 while (phase [1] < 0)

428 phase [1] = phase[1] + 2*pi;

429 phase_updater (1);

430 ind [0]++;

431 ind [1]++;

432 }

433 else if ((counter > stop_listen) && (counter < end_slot))

434 {

435 ind [0]++;

436 ind [1]++;

437 counter ++;

438 phase_updater (0);

439 phase_updater (1);

440

441 }

442 else if (counter == end_slot)

443 {

444 phase_updater (0);

445 phase_updater (1);

446 ind [0]++;

447 ind [1]++;

448 TS ++;

449 counter = 0;

450 }

451 }

452

453 }

454

455 else if (TS == 2) // time slot 2

456 {

457 if(node == 1)

458 {

459 if ((counter <start_listen)&&(counter >= start_slot))

99

460 // 0.1s wait

461 {

462 if (input > peak [1])

463 {

464 peak [1] = input;

465 scale [1] = 1/ peak [1];

466 }

467 counter ++;

468 }

469 else if ((counter >= start_listen) && (counter < stop_listen))

470 // 0.5s track

471 {

472 ZC_track (input ,1);

473 counter ++;

474

475 }

476 else if (counter == stop_listen)

477 {

478 ZC_estimation (1);

479 counter ++;

480 ind [1]++;

481

482 phase [1] = (double)ind [1]* inv_fs*fhat [1] + phhat [1];

483 phase [1] = phase [1] - 2*pi *510;

484 while (phase [1] > 2*pi)

485 phase [1] = phase[1] - 2*pi;

486 while (phase [1] < 0)

487 phase [1] = phase[1] + 2*pi;

488 phase_updater (1);

489 }

490 else if ((counter > stop_listen) && (counter < end_slot))

491 {

492 ind [1]++;

493 counter ++;

494 phase_updater (1);

495 }

496 else if (counter == end_slot)

100

497 {

498 ind [1]++;

499 phase_updater (1);

500 TS ++;

501 counter = 0;

502 }

503 }

504 else if (node == 2)

505 {

506 if ((counter >= start_play) && (counter <= stop_play))

507 {

508 output = ZC_play (0);

509

510 data .channel [0] = (short)(output *32000);

511 data .channel [1] = data .channel [0];

512 counter ++;

513 ind [0]++;

514 ind [1]++;

515 phase_updater (0);

516 phase_updater (1);

517

518 // Write L+R channels

519 MCBSP_write (DSK6713_AIC23_DATAHANDLE , data .combo);

520 }

521 else if ((counter > stop_play) && (counter < end_slot))

522 {

523 counter ++;

524 ind [1]++;

525 phase_updater (1);

526 }

527 else if (counter == end_slot)

528 {

529 counter = 0;

530 phase_updater (1);

531 ind [1]++;

532 TS ++;

533 }

101

534 }

535 }

536 else if (TS == 3) // time slot 3

537 {

538 if ((counter >= start_slot_last) && (counter < start_play_last))

539 {

540 ind [1]++;

541 phase_updater (1);

542 counter ++;

543 }

544 if ((counter >= start_play_last) && (counter <= stop_play_last))

545 {

546

547 output = ZC_play (1);

548 phase_updater (1);

549

550 data .channel [0] = (short)(output *32000);

551 data .channel [1] = data .channel [0];

552 counter ++;

553 ind [1]++;

554

555 MCBSP_write (DSK6713_AIC23_DATAHANDLE , data .combo);

556 }

557 else if ((counter > stop_play_last) && (counter < end_slot_last))

558 {

559 counter ++;

560 }

561 else if (counter == end_slot_last)

562 {

563 counter = 0;

564 TS = 0;

565 start = 0;

566 detector_index = 0;

567 detector_sum = 0;

568 }

569 }

570 }

102

571 }

572

573

574 void ZC_track (double input , unsigned short ZCnum)

575 /*

576 This function is used to update the tracking variables

577 of the linear regression for each estimator .

578

579 input: the read sample from ADC

580 The sample is compared with the hysteresis

581 parameter and used to decide if the state

582 is changed .

583

584 ZCnum: index of the estimator

585 */

586 {

587 double slope = 0;

588 int temp = 0;

589

590 input = input * scale[ZCnum];

591

592 if (ind[ZCnum] == 0)

593 {

594 if (input > A)

595 {

596 i1[ZCnum] = 0;

597 i1_value [ZCnum] = input;

598 state[ZCnum] = 1;

599 }

600 else if (input < A_i)

601 {

602 i2[ZCnum] = 0;

603 i2_value [ZCnum] = input;

604 state[ZCnum] = 2;

605 }

606 else state[ZCnum] = 0;

607 }

103

608 else

609 {

610 if(state[ZCnum] == 0)

611 {

612 if(input > A)

613 {

614 i1[ZCnum] = ind[ZCnum];

615 i1_value [ZCnum] = input;

616 state[ZCnum] = 1;

617 }

618 else if(input <A_i)

619 {

620 i2[ZCnum] = ind[ZCnum];

621 i2_value [ZCnum] = input;

622 state[ZCnum] = 2;

623 }

624 }

625 else if (state[ZCnum] == 1)

626 {

627 if(input > A)

628 {

629 i1[ZCnum] = ind[ZCnum];

630 i1_value [ZCnum] = input;

631 }

632 else if ((input > A_i) && (input < A))

633 {

634 state[ZCnum] = 3;

635 }

636 else if (input < A_i)

637 {

638 i2[ZCnum] = ind[ZCnum];

639 i2_value [ZCnum] = input;

640 slope = (i2_value [ZCnum] - i1_value [ZCnum])*fs;

641 temp = i2[ZCnum] - i1[ZCnum];

642 slope = slope / (double)(temp);

643 zt[ZCnum] = (double)i1[ZCnum]* inv_fs;

644 zt[ZCnum] = zt[ZCnum] - i1_value [ZCnum]/ slope;

104

645 n[ZCnum]++;

646 if (n[ZCnum] >= 2)

647 {

648 ph[ZCnum] = ph[ZCnum]+pi;

649 }

650 else ph[ZCnum] = pi;

651 state[ZCnum] = 2;

652

653 ZC_updatepar (ZCnum);

654 }

655 }

656 else if (state[ZCnum] == 2)

657 {

658 if (input < A_i)

659 {

660 i2[ZCnum] = ind[ZCnum];

661 i2_value [ZCnum] = input;

662 }

663 else if ((input > A_i) && (input < A))

664 {

665 state[ZCnum] = 4;

666 }

667 else if (input > A)

668 {

669 i1[ZCnum] = ind[ZCnum];

670 i1_value [ZCnum] = input;

671 slope = (i2_value [ZCnum] - i1_value [ZCnum])*fs;

672 temp = i2[ZCnum] - i1[ZCnum];

673 slope = slope / (double)(temp);

674 zt[ZCnum] = (double)i2[ZCnum]* inv_fs;

675 zt[ZCnum] = zt[ZCnum] - i2_value [ZCnum]/ slope;

676 n[ZCnum]++;

677 if (n[ZCnum]>=2)

678 ph[ZCnum] += pi;

679 else ph[ZCnum] = 0;

680

681 state[ZCnum] = 1;

105

682

683 ZC_updatepar (ZCnum);

684 }

685 }

686 else if (state[ZCnum] == 3)

687 {

688 if (input > A)

689 {

690 i1[ZCnum] = ind[ZCnum];

691 i1_value [ZCnum] = input;

692 state[ZCnum] = 1;

693 }

694 else if ((input > A_i) && (input < A))

695 {

696 state[ZCnum] = 3;

697 }

698 else if (input < A_i)

699 {

700 i2[ZCnum] = ind[ZCnum];

701 slope = (i2_value [ZCnum] - i1_value [ZCnum])*fs;

702 temp = i2[ZCnum] - i1[ZCnum];

703 slope = slope / (double)(temp);

704 zt[ZCnum] = (double)i1[ZCnum]* inv_fs;

705 zt[ZCnum] = zt[ZCnum] - i1_value [ZCnum]/ slope;

706 n[ZCnum]++;

707 if (n[ZCnum]>=2)

708 {

709 ph[ZCnum] = ph[ZCnum] + pi;

710 }

711 else ph[ZCnum] = pi;

712

713 state [ZCnum]= 2;

714 ZC_updatepar (ZCnum);

715 }

716 }

717 else if (state[ZCnum] == 4)

718 {

106

719 if(input < A_i)

720 {

721 i2[ZCnum] = ind[ZCnum];

722 i2_value [ZCnum] = input;

723 state[ZCnum] = 2;

724 }

725 else if ((input > A_i) && (input < A))

726 {

727 state[ZCnum] = 4;

728 }

729 else if (input > A)

730 {

731 i1[ZCnum] = ind[ZCnum];

732 i1_value [ZCnum] = input;

733 slope = (i2_value [ZCnum] - i1_value [ZCnum]) *fs;

734 temp = i2[ZCnum] - i1[ZCnum];

735 slope = slope / (double)(temp);

736 zt[ZCnum] = (double)i2[ZCnum]* inv_fs;

737 zt[ZCnum] = zt[ZCnum] - i2_value [ZCnum]/ slope;

738 n[ZCnum]++;

739 if (n[ZCnum]>= 2)

740 {

741 ph[ZCnum] = ph[ZCnum]+pi;

742 }

743 else ph[ZCnum] = 0;

744

745 state[ZCnum] = 1;

746 ZC_updatepar (ZCnum);

747 }

748

749 }

750 }

751

752 ind[ZCnum]++;

753 }

754

755

107

756 void ZC_updatepar (unsigned short ZCnum)

757 /*

758 This function is used to update the tracking variables

759

760 ZCnum: index of the estimator

761 */

762 {

763 AA[ZCnum] = AA [ZCnum]+ zt[ZCnum]*zt[ZCnum];

764 BB[ZCnum]++;

765 CC[ZCnum] = CC[ZCnum] + zt[ZCnum];

766 DD[ZCnum] = DD[ZCnum] - zt[ZCnum]*ph[ZCnum];

767 EE[ZCnum] = EE[ZCnum] - ph[ZCnum];

768 }

769

770

771 void ZC_estimation (unsigned short ZCnum)

772 /*

773 This function is used to estimate the unknown parameters based on

774 the tracking variables .

775

776 ZCnum: index of the estimator

777 */

778 {

779 delta[ZCnum] = BB[ZCnum] - CC[ZCnum] *CC[ZCnum] /AA[ZCnum];

780 phhat[ZCnum] = -(EE[ZCnum]-CC[ZCnum]* DD[ZCnum]/AA[ZCnum])/ delta[ZCnum];

781 fhat [ZCnum] = -CC[ZCnum] /AA[ZCnum] *phhat[ZCnum]-DD[ZCnum]/AA[ZCnum];

782 }

783

784 void ZC_init (unsigned short ZCnum)

785 /*

786 This function is used to initalize the parameters .

787

788 ZCnum: index of the estimator

789 */

790 {

791

792 i1[ZCnum] = 0;

108

793 i2[ZCnum] = 0;

794 i1_value [ZCnum] = 0;

795 i2_value [ZCnum] = 0;

796 AA[ZCnum] = 0;

797 BB[ZCnum] = 0;

798 CC[ZCnum] = 0;

799 DD[ZCnum] = 0;

800 EE[ZCnum] = 0;

801 delta[ZCnum] = 0;

802 zt[ZCnum] = 0;

803 ph[ZCnum] = 0;

804 n[ZCnum] = 0;

805 ind[ZCnum] = 0;

806 state[ZCnum] = 0;

807 fhat [ZCnum] = 0;

808 phhat[ZCnum] = 0;

809 peak [ZCnum]= -1.0; // max of input beacon

810 scale[ZCnum] = 1.0; //1/ peak

811 acme = 0;

812 }

813

814 double ZC_play (unsigned short ZCnum)

815 /*

816 This function is used to generate the sinosoid wave

817 based on the estimates .

818

819 ZCnum: index of the estimator

820 */

821 {

822 double output;

823 output = sindp(phase[ZCnum]);

824

825 return output;

826 }

827

828

829 void phase_updater (unsigned short ZCnum)

109

830 /*

831 This function is used to update the phase under

832 holdover mode .

833

834 ZCnum: index of the estimator

835 */

836 {

837 phase[ZCnum] = phase[ZCnum] + fhat [ZCnum]* inv_fs;

838 while (phase[ZCnum] > 2* pi)

839 phase[ZCnum] = phase[ZCnum] - 2*pi;

840 while (phase[ZCnum] < 0)

841 phase[ZCnum] = phase[ZCnum] + 2*pi;

842 }

110

Appendix C

Approximate Maximum Likelihood

Estimation using Secant Method

Matlab Source Code

The following MATLAB code is used to analyze the recording in *.WAV format by

using the FFT-Secant MLE described in Section 3.3. By using this code, the amplitude

estimate in each timeslot can be calculated and thus the power ratio ρ of the beamformer

is computed.

C.1 Main Function

1 % LYZ Sept -21 -201

2 % Use Secant ML estimator to estiamte

3 % for phase , frequency , and amplitude

4

5 clear all;

6 clc;

7 % --

8 % USER PARAMETERS

9 % --

10 M = 2; % number of nodes

111

11 nfft = 2^16; % number of points in estimator FFT

12 N = 100; % number of tests

13 T = 0.6; % duration of signal used for estimates

14 j = sqrt (-1);

15 delay = 0.13; % time before the beacon started

16 period = 7; % length of each test

17 tstart = 0.2; % start time to cut signal

18 tend = tstart+T; % end time to cut signal

19 D = 1.25; % time difference between successive signals

20 D_last = 2; % time different between the last beacon

21 % and the 2nd last beacon

22 el = 1e-7; % error bound for iteration

23 slot = [0 D 2*D 2*D+D_last];

24 slot = slot + delay;

25

26

27

28 % --

29

30 format compact

31

32 % read datafile (variables y and fs)

33 % load .mat

34 [y,fs] = wavread(’cut4 .wav’);

35 ahat = zeros (2*M,N);

36 omegahat = zeros (2*M,N);

37 thetahat = zeros (2*M,N);

38 counter = zeros (2*M,N);

39

40

41

42 tic

43

44 for i = 1:N

45 for k = 1:2* M

46 t0 = slot (k)+(i -1)* period;

47 sigstartindex = round((t0+tstart)*fs);

112

48 sigendindex = round((t0+tend)* fs)-1;

49 sig = y(sigstartindex :sigendindex);

50 NN = length(sigstartindex : sigendindex);

51 n0 = sigstartindex ;

52 startindex = round(((k -1)* period+tstart)*fs);

53 endindex = round(((k -1)* period+tend)*fs)-1;

54 NN = length(sig);

55 [omegahat (k,i),thetahat (k,i),ahat (k,i),ifconv] = ...

56 ML_est(sig ’,nfft ,NN ,el ,1/fs ,n0);

57

58 if ifconv == 0,

59 break;

60 end

61

62 end

63

64 if ifconv == 0,

65 continue ;

66 end

67 [i toc 4]

68 end

69 ampratio = ahat (end ,:)./(ahat (2 ,:)+ ahat (3 ,:));

70 powratio = ampratio .^2;

71 minimum = min(powratio)

72 maximum = max(powratio)

73 average = mean (powratio)

74 sd = (var(powratio)^0.5)

75 save ahat_cut14 .mat ahat ampratio powratio omegahat thetahat counter

C.2 Function of Implementing the FFT-Secant MLE

This function is used to implement the FFT-Secant MLE.

1 function [omega ,theta ,ahat ,flag_conv] = ML_est(z,nfft ,N,e,T,n0)

2 %UNTITLED3 Summary of this function goes here

3 % Detailed explanation goes here

4

5 A = fft(z,nfft)/N;

113

6 [peak ,k] = max(abs(A(1: nfft /2)));

7

8 omega1 = k*2*pi/nfft /T;

9 omega2 = (k -2)*2*pi/nfft /T;

10 y1 = dA_fun(N,z,omega1 ,1/T);

11 y2 = dA_fun(N,z,omega2 ,1/T);

12

13 delta = 1;

14 jj= 2;

15 error = 0;

16 while abs(delta)>e

17 jj = jj +1;

18

19 delta = y1 * (omega1 - omega2)/(y1 -y2);

20 omega2 = omega1;

21 y2 = y1;

22 omega1 = omega1 - delta;

23

24 y1 = dA_fun(N,z,omega1 ,1/T);

25 if (jj > 2000)

26 error = 1;

27 break;

28 end

29

30 end

31

32 if error == 1

33 flag_conv = 0;

34 printf(’Error\n’)

35 else

36 flag_conv = 1;

37 end

38

39 omega = omega1;

40 theta = angle(exp(-1j*(omega1*n0*T))*...

41 A_fun(N,z,omega1 ,1/T));

42 ahat = abs(A_fun(N,z,omega1 ,1/T));

114

43

44 end

C.3 Function of Computing A(ω)

This function is used to compute (2.10).

1 function value = A_fun(N,xx ,w,fs)

2 % Compute the likelihood function A(omega) from Rife ’s paper

3

4

5 % Input Paramter :

6 % N: length of signal

7 % xx: input signal

8 % w: omega

9 % fs: sampling frequency

10

11 % Output Parameter :

12 % value: A(k)

13

14 %w = 2*pi*k*fs/nfft ;

15

16 T = 1/fs;

17 j = sqrt (-1);

18 nn = 0:N-1;

19

20 value = (1/N)* sum(xx.*exp(-j*nn*w*T));

21

22

23 end

C.4 Function of Computing F
′

(ω)

This function is used to compute (3.18).

1 function da = dA_fun(N,xx ,w,fs)

115

2 % Input Paramter :

3 % N: length of signal

4 % xx: input signal

5 % w: omega

6 % fs: sampling frequency

7

8 % Output Parameter :

9 % da: A’(k)

10

11 %w = 2*pi*k*fs/nfft ;

12

13 T = 1/fs;

14

15 n = 0:N-1;

16 sine = sin(T*n*w);

17 cose = cos(T*n*w);

18

19 x = real (xx);

20 y = imag (xx);

21

22 B = sum(x.* cose +y.* sine);

23 B = B/N;

24 C = sum(x.* sine - y.* cose);

25 C = -C/N;

26

27 dB = sum(n.*(y.* cose - x.* sine));

28 dB = dB*T/N;

29 dC = sum(n.*(x.* cose + y.* sine));

30 dC = -T/N*dC;

31

32 da = 2*B*dB +2*C*dC;

33

34

35 end

116

C.5 Function of Phase Unwrapping

This function is used unwrap the phase to the range (−π, π].

1 function y = dounwrap (x)

2 % doing phase unwrapping

3

4 y = x;

5 I = find (x>pi);

6 y(I) = y(I)-2* pi;

7 I = find (x<-pi);

8 y(I) = y(I)+2* pi;

117

Bibliography

[1] C. Johnson, W. Sethares, and A. Klein, Software Receiver Design: Build Your Own

Digital Communications System in Five Easy Steps. 2011.

[2] M. Skolnik, “Introduction to radar systems,” 1980.

[3] W. Knight, R. Pridham, and S. Kay, “Digital signal processing for sonar,” Proceedings

of the IEEE, vol. 69, no. 11, pp. 1451–1506, 1981.

[4] B. Widrow and S. Stearns, “Adaptive signal processing,” Englewood Cliffs, NJ,

Prentice-Hall, Inc., 1985, 491 p., vol. 1, 1985.

[5] R. Mudumbai, D. Brown, U. Madhow, and H. Poor, “Distributed transmit beamform-

ing: challenges and recent progress,” Communications Magazine, IEEE, vol. 47, no. 2,

pp. 102–110, 2009.

[6] J. DiBiase, H. Silverman, and M. Brandstein, “8 Robust Localization in Reverberant

Rooms,” Microphone arrays: signal processing techniques and applications, p. 157,

2001.

[7] K. Varma, Time-delay-estimate based direction-of-arrival estimation for speech in re-

verberant environments. PhD thesis, Citeseer, 2002.

[8] D. Rife and R. Boorstyn, “Single-tone parameter estimation from discrete-time ob-

servations,” IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591–598,

1974.

118

[9] D. Rife, Digital tone parameter estimation in the presence of Gaussian noise. PhD

thesis, Polytechnic Institute of Brooklyn, 1973.

[10] T. Abatzoglou, “A fast maximum likelihood algorithm for frequency estimation of a

sinusoid based on Newton’s method,” IEEE transactions on acoustics, speech, and

signal processing, vol. 33, no. 1, pp. 77–89, 1985.

[11] M. Macleod, “Fast nearly ML estimation of the parameters of real or complex single

tones or resolved multiple tones,” Signal Processing, IEEE Transactions on, vol. 46,

no. 1, pp. 141–148, 1998.

[12] D. Brown III, Y. Liao, and N. Fox, “Low-Complexity Real-Time Single-Tone Phase

and Frequency Estimation,” IEEE Military Communication, 2010.

[13] S. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression (Cor-

resp.),” Information Theory, IEEE Transactions on, vol. 31, no. 6, pp. 832–835, 2002.

[14] S. Kay, “A fast and accurate single frequency estimator,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 37, no. 12, pp. 1987–1990, 2002.

[15] U. Mengali and M. Morelli, “Data-aided frequency estimation for burst digital trans-

mission,” Communications, IEEE Transactions on, vol. 45, no. 1, pp. 23–25, 1997.

[16] D. Kim, M. Narasimha, and D. Cox, “An improved single frequency estimator,” Signal

Processing Letters, IEEE, vol. 3, no. 7, pp. 212–214, 1996.

[17] M. Ni, An Optimized Software-Defined-Radio Implementation of Time-Slotted Car-

rier Synchronization for Distributed Beamforming. PhD thesis, WORCESTER POLY-

TECHNIC INSTITUTE, 2011.

[18] S. Kay, Fundamentals of statistical signal processing: estimation theory. 1993.

[19] M. Fowler, “Phase-based frequency estimation: A review,” Digital Signal Processing,

vol. 12, no. 4, pp. 590–615, 2002.

[20] D. Brown, B. Zhang, B. Svirchuk, and M. Ni, “An experimental study of acoustic

distributed beamforming using round-trip carrier synchronization,” in Phased Array

119

Systems and Technology (ARRAY), 2010 IEEE International Symposium on, pp. 316–

323, IEEE.

[21] K. Atkinson, “An introduction to numerical analysis. 1989,” New York, p. 528.

[22] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Springer Verlag, 2007.

[23] F. Hildebrand, Introduction to numerical analysis. Dover Pubns, 1987.

[24] G. Allaire and S. Kaber, Numerical linear algebra. Springer Verlag, 2008.

[25] S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient approximations for the arctangent

function,” Signal Processing Magazine, IEEE, vol. 23, no. 3, pp. 108–111, 2006.

[26] V. Friedman, “A zero crossing algorithm for the estimation of the frequency of a single

sinusoid in white noise,” Signal Processing, IEEE Transactions on, vol. 42, no. 6,

pp. 1565–1569, 2002.

[27] S. Tretter, Communication System Design Using DSP Algorithms: With Laboratory

Experiments for the TMS320C6713 DSK. Springer Verlag, 2008.

[28] D. Brown and H. Poor, “Time-slotted round-trip carrier synchronization for distributed

beamforming,” Signal Processing, IEEE Transactions on, vol. 56, no. 11, pp. 5630–

5643, 2008.

[29] N. Kehtarnavaz, Real-time digital signal processing based on the TMS320C6000.

Newnes, 2005.

