
Angular Velocity-based Structural Damage Detection

Yizheng Liaoa and Anne S. Kiremidjianb and Ram Rajagopala and Chin-Hsiung Lohc

aStanford Sustainable Systems Lab, Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, CA, United States;

bDepartment of Civil and Environmental Engineering, Stanford University, 473 Via Ortega,
Stanford, CA, United States;

cDepartment of Civil Engineering, National Taiwan University, No.1, Section 4, Roosevelt
Road, Taipei 10617, Taiwan;

ABSTRACT

Damage detection is an important application of structural health monitoring. With the recent development
of sensing technology, additional information about structures, angular velocity, has become available. In this
paper, the angular velocity signals obtained from gyroscopes are modeled as an autoregressive (AR) model. The
damage sensitive features (DSFs) are defined as a function of the AR coefficients. It is found that the mean
values of the DSF for the damaged and undamaged signals are different. Also, we show that the angular velocity-
based AR model has a linear relationship with the acceleration-based AR model. To test the proposed damage
detection method, the algorithm has been tested with the experimental data from a recent shake table test
where the damage is introduced systemically. The results indicate that the change of DSF means is statistically
significant, and the angular velocity-based DSFs are sensitive to damage.
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1. INTRODUCTION

Structural health monitoring (SHM) has become great significant in the field of civil engineering during the last
two decades. Since many civil infrastructures, such as bridges and buildings, are exposed to complex loadings
and environment, it is necessary to continuously monitor the performance level and safety of structures during
daily operation and extreme events like earthquakes and hurricanes.

Among different types of SHM methodology, the vibration-based damage detection algorithms using accel-
eration measurements have received considerable attention. When the physical properties, such as mass and
stiffness, are changed, the structural modal properties (e.g. natural frequency, mode shapes) will become differ-
ent as well. Therefore, damage can be detected by comparing the features extracted from the structural responses
before and after damage. Comprehensive summaries and discussions on the vibration-based damage detection
are given in Ref.1–3.

Recently, with the development of sensing technology, many new low-cost microelectromechanical sensors
(MEMS) become available. These sensors provide many new structural quantities, which are not available or
expensive to measure before. Recent research works have demonstrated that these newly available information
could improve the reliability and accuracy of structural damage detection.4,5 For example, many off-the-shelf
sensors have both accelerometers and gyroscopes on board now. They are synchronized and provide measure-
ments simultaneously. Therefore, we can use the angular velocity to complement the acceleration-based damage
detection.

In this paper, we propose a damage detection algorithm based on the newly available angular velocity mea-
surements. We firstly formulate the angular velocity signal as an autoregressive (AR) model and use the model
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coefficients as the damage sensitive feature (DSF). Then we discuss the connection between the acceleration-
based AR model and angular velocity-based AR model. Our results show that the coefficients of both AR models
have a linear relationship. Therefore, we can extend the statistical properties of the acceleration-based AR model
to the new DSF. Thirdly, we use the data collected from a recent shake table test to validate the sensitivity of
the angular velocity-based DSFs to damage. The results indicate that the difference in the means of the DSFs
before and after the damage is significant.

The rest paper is organized as follows: Section 2 presents the AR model of the angular velocity signal and
shows the connection with the acceleration-based AR model; Section 3 validates the angular velocity-based DSFs
on an experimental data set; Section 4 draws the conclusion.

2. ANGULAR VELOCITY-BASED DAMAGE DETECTION ALGORITHM

The proposed angular velocity-based algorithm consists of three steps: (i) data acquisition, (ii) damage sensitive
feature (DSF) extraction, and (iii) damage identification and classification. This process is summarized in Fig. 1.
In this first step, structural responses, either acceleration or angular velocity, are obtained sequentially. In this
paper, SnowFort, an open source wireless sensor network for infrastructural monitoring,6 is used as the data
acquisition system. Details are given in Section. 3. In the second step, we apply the auto-regressive (AR) model
to extract the DSF. Then the statistical method is applied to declare damage. In this paper, we perform the
hypothesis test to identify damage.

Figure 1. Flow chart of the proposed algorithm

2.1 Feature Extraction

The DSF extraction includes two steps: (i) normalization and standardization and (ii) AR model fitting. The
discrete time angular velocity responses from sensor j, ωj [n], is divided into chunks with a size N . Let ωi

j [n]

denote the ith chunk of the signal ωj [n]. The normalized and standardized signal ω̃i
j [n] is obtained as follows:

ω̃i
j [n] =

ωi
j [n]− µi

j

σi
j

,

where µi
j and σi

j denote the mean and standard deviation of the ith chunk. For notation convenience, we will

use ωi
j [n] as ω̃i

j [n] in the following text.

The AR model has been used to model the time-series structural responses by many previous works.7–9 The
singe-variate AR model of order p is given as

ωi
j [n] =

p∑
k=1

βkω
i
j [n− k] + ε[n], (1)

where βk is the kth AR coefficient and ε[n] is the residual and follows a Gaussian distribution with mean 0 and
variance σ2. The AR coefficients βk will serve as the DSF in our damage detection algorithm. In the following
section, we will show that the coefficients of angular velocity-based AR model are sensitive to the damage.

2.2 AR model of angular velocity

In previous work, the coefficients of the acceleration-based AR model have been widely used as the DSF because
they are closely related to structural parameters7 and sensitive to damage.8,10 In this section, we will show that
the coefficients of the angular velocity-based AR model are also sensitive to damage.



Let a[n] denote the discrete time acceleration signal at time n. We assume that the acceleration signal has
been standardized and normalized. The acceleration-based AR model of order p is given as

a[n] =

p∑
k=1

αka[n− k] + δ[n], (2)

where αk is the kth AR coefficient and δ[n] is the residual and follows a Gaussian distribution with mean 0 and
variance σ̃2. At time n, the velocity v[n] can be expressed as

v[n] = v[n− 1] + Ta[n], (3)

where Ts = 1
fs

is the sampling rate and fs is the sampling frequency. With substitution, (2) becomes to

v[n]− v[n− 1]

Ts
=

p∑
k=1

αk
v[n− k]− v[n− k − 1]

T
+ δ[n] (4)

v[n]− v[n− 1] =

p∑
k=1

αk(v[n− k]− v[n− k − 1]) + Tsδ[n] (5)

= α1v[n− 1] + (α2 − α1)v[n− 2] + · · ·+ (αp − αp−1)v[n− p]− αpv[n− p− 1] + Tsδ[n]

v[n] = (α1 + 1)v[n− 1] + (α2 − α1)v[n− 2] + · · ·+ (αp − αp−1)v[n− p]− αpv[n− p− 1] + Tsδ[n]

=

p+1∑
k=1

α̃kv[n− k] + δ̃[n], (6)

where δ̃[n] is a Gaussian random variable with zero mean and a variance of T 2
s σ̃

2.

The angular velocity ω[n] has a linear relationship with the linear velocity v[n], as follows:

ω[n] =
v[n]

r
,

where r is the constant radius. The gyroscope measures the rotation speed around the vertical axis of the
acceleration, as shown in Fig. 2. Therefore, the AR model of angular velocity is

Figure 2. Relationship between the acceleration (a[n]) and the angular velocity (ω[n]).
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Therefore, the first AR coefficient of the angular velocity-based model is a linear shift of the first coefficient of
the acceleration-based AR model, i.e. β1 = 1 +α1. The rest coefficients of the angular velocity-based AR model
is the difference of the coefficients of the acceleration-based AR model, i.e. βi = αi − αi−1. The variance of the
residual term in the angular velocity-based AR model is a scaled version of the term in the acceleration-based
AR model, i.e. σ2 = T 2

s σ̃
2.

In the acceleration-based AR model, the damage is identified by investigating the difference of means of DSFs
before and after damage.7 As shown in (6) and (8), the coefficients of angular velocity-based AR model are a
linear combination of α. Therefore, the means of coefficients in the angular velocity-based AR model will be
different before and after damage. In Section. 3, we will show the means before and after damage. Also, since the
acceleration-based AR coefficients follow the Gaussian distribution,11 the angular velocity-based AR coefficients
will follow the Gaussian distribution as well due to the linear transformation in (6). Furthermore, since Ts � 1
in many cases, the variance of noise term in the angular velocity-based AR model is much smaller than that in
the acceleration-based model. It means that the new model can achieve the same accuracy with the lower order.
In many applications, the AR fitting algorithm is embedded on the low-power wireless sensors. This advantage
of the angular velocity-based AR model can potentially reduce the computation power and extend the lifetime
of wireless sensor, which is usually powered by batteries. Many previous works have shown that the first three
coefficients of the acceleration-based AR model are sensitive to the damage.7,8, 10,11 Hence, in following context,
we choose the first coefficient of the angular velocity-based AR model (β1) as the DSF.

The damage is declared by exploring the difference in means of DSFs before and after damage. Therefore,
we can formulate the damage detection problem as a hypothesis test:

H0 : µDSF,undamaged = µDSF,test

H1 : µDSF,undamaged 6= µDSF,test,

where µDSF,undamaged is the mean of the DSFs extracted from the undamaged signal. This can be obtained either
by simulation or by previous measurements. µDSF,test represents the mean of the DSFs from the test signal. Here,
H0 represents the undamaged status and H1 represents the damaged status. We use t-test to justify the status.

3. EXPERIMENTAL VALIDATION

3.1 Description of Experiment

This experiment was designed and performed at National Center for Research on Earthquake Engineering
(NCREE), Taiwan. Two identical three-story single bay steel frames were constructed. Both structures have
an inter-story height of 1.1m. Floor dimension at every story is 1.1m × 1.5m. The columns have rectangular
cross-sections with a dimension of 0.15m × 0.025m × 1.06m. Fig. 3 shows these two structures in the experiment
facility. For Specimen 2, the Northwestern column (the red column in Fig. 4) is replaced with a weakened column,
which has a thickness of 0.015m. Thus, Specimen 1 is a symmetric structure while Specimen 2 is non-symmetric.

These two structures were placed side by side on the same shake table. The record of the 1999 Chi-Chi
earthquake Station TCU 071 was used as the base excitation of the experiment. The excitation was applied in



Figure 3. Photo of two structures (in green) on the shake table. The front structure is Specimen 1 and the back structure
is Specimen 2.

Figure 4. Two structures and sensor locations used at the NCREE experiment. The weakened column is in red.



the x-direction with amplitudes progressively increasing from 100 to 1450 gal. White noise excitations with 50
gal amplitude were applied between strong motion runs. Total 24 runs were conducted during the experiment.
The details about each run are summarized in Table. 1. For the runs before Run WN11, a 500 kg mass block
was placed on every story of both specimens. For the rest runs, an additional 500 kg mass block was added on
the roof of each specimen.

Table 1. Summary of Runs. The attribute WN means the run is ambient vibration.
Run number Amplitude Run number Amplitude

(gal) (gal)

WN1 50 WN7 50
1 100 7 1000

WN2 50 WN8 50
2 250 8 1150

WN3 50 WN9 50
3 400 9 1300

WN4 50 WN10 50
4 550 10 1450

WN5 50 WN11 50
5 700 11 850

WN6 50 WN12 50
6 850 12 1000

3.2 Data Acquisition Systems

In this experiment, 21 wireless sensors were installed for data acquisition. Each wireless sensing device was
assembled with a Telosb mote12,13 and a 16-bit digital sensor, including a three-axis accelerometer and a three-
axis gyroscope,14 as shown in Fig. 5. These motes were operating within the SnowFort system, an open source
wireless sensor system designed for infrastructure monitoring.6,15 Motes and sensors were powered by two stan-
dard AA batteries. Both the accelerometer and gyroscope data were collected at 51.2Hz sampling frequency and
filtered with a 20Hz anti-aliasing filter. The sampling frequency is fractional because the onboard microprocessor
used 1024 ticks to represent one second and we set the mote to sample every 20 ticks. For the runs before Run
WN10, the wireless accelerometers had a measurement range of ±2g. The sensitivity was 16384 least significant
bits (LSB) per g. The gyroscopes had a range of ±250 degrees per second (◦/sec) with a sensitivity of 131
LSB per ◦/sec. For the rest runs, the ranges of both accelerometer and gyroscope were increased. The range of
accelerometer was increased to ±8g with a sensitivity of 4096 LSB/g. The range of gyroscope was ±1000◦/sec
with a sensitivity of 32.8 LSB per ◦/sec. According to Ref. 14, the accelerator has an average noise level of 1.265
mg, and the gyroscope has an average noise level of 0.016◦/sec. The sampling of the accelerometer and gyroscope
over all three axes is synchronized by sharing the same clock on the mote. Different motes are synchronized with
a common base station.

The sensor installation locations are shown in Fig. 4. The wireless sensors were placed on the floors and the
columns. The sensors on the columns were about 0.28m and 0.83m above each floor level to avoid hinged region.
The wireless sensors, which were installed on the floors, were located at the midpoints of opposite edges of each
floor. Since all wireless sensors were three-axis, the vibrations and rotations along all directions were collected.

3.3 Experimental Results

In this section, we will use the DSFs extracted from the measurements collected from the sensors on the columns.
We want to investigate if a difference in mans can be identified for the pair of sensors at the exact same location
of both specimens. As we have discussed above, Specimen 2 has a weaken column. Therefore, we can regard
Specimen 1 as the undamaged structure and Specimen 2 as the damaged structure. If a difference in means is
observed, we will declare the damage. Fig. 6 shows an example of the gyroscope measurements. We can see that
the z-axis has the largest variation because the force is applied in the x-axis and the z-axis is perpendicular to
the shake table.



Figure 5. The green device (upper) is the Telosb mote with TI MSP430 microprocessor and CC2420 Zigbee transceiver.
The blue device (lower) is the MPU 6050 digital sensor with one three-axis accelerometer and one three-axis gyroscope.
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Figure 6. Gyroscope measurements of the sensor on the 1st floor column of Specimen 1 in Run WN1.



To extract the DSF from the gyroscope measurements, we divide the discrete time data into chunks with a
chunk size of 200 samples. Each chunk is fitted with an AR model with an order of 5. As shown in Fig. 6, several
samples at the beginning and the end of the recording were collected when the shake table was off. Therefore,
we do not include these samples into the AR fitting process. In the following analysis, we use β1 as the DSF.
Fig. 7 shows the histogram of β1, which approximates to a Gaussian distribution. This observation is consistent
with our discussion in Section 2.
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Figure 7. Histogram of β1 collected from the sensor on the 1st floor column of Specimen 1 in Run WN1.

Fig. 8, 9, and 10 illustrate the box plots of the DSF β1 collected at various locations of both Specimen 1 and
Specimen 2. The box plot summarizes the median, 25% quantile, 75% quantile and other information. Since
the DSF follows a Gaussian distribution, the median and mean are the same. For t-test, the significance level is
set at 0.05. For the 1st floor columns, as shown in Fig. 8, the difference in means is statistically significant. For
the 2nd floor columns, we have the consistent observation. For the 3rd floor columns, the p-value of one pair of
sensors is larger than 0.5 and the difference in means is insignificant. The reason is that the sensor installation
location is far away from the damage point. Therefore, the damage at the 1st floor has less effect on this pair of
sensors.
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Figure 8. Box plot of β1 of the sensor on the 1st floor columns of both specimens in Run WN1.
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Figure 9. Box plot of β1 of the sensor on the 2nd floor columns of both specimens in Run WN1.
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Figure 10. Box plot of β1 of the sensor on the 3rd floor columns of both specimens in Run WN1.



4. CONCLUSION

In this paper, we present a damage detection algorithm based on the newly available angular velocity data. We
firstly model the time-series angular velocity measurements as an AR model. Then we show that the angular
velocity-based and acceleration-based AR models have a linear relationship and share many common properties.
Therefore, as same as many vibration-based damage detection algorithms, we can use the difference in means of
the DSFs to identify damage. At last, we use an experimental data set to validate that the angular velocity-based
DSFs are sensitive to damage and the difference in means is statistically significant.
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