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ABSTRACT

This paper presents a sequential structural damage detection algorithm that is based on a statistical model
for the wavelet transform of the structural responses. The detector uses the coefficients of the wavelet model
and does not require prior knowledge of the structural properties. Principal Component Analysis is applied to
select and extract the most sensitive features from the wavelet coefficients as the damage sensitive features. The
damage detection algorithm is validated using the simulation data collected from a four-story steel moment frame.
Various features have been explored and the detection algorithm was able to identify damage. Additionally, we
show that for a desired probability of false alarm, the proposed detector is asymptotically optimal on the expected
delay.

Keywords: Earthquake Damage Detection, Continuous Wavelet Transform, Bayesian Detection, Sequential
Detection, Structural Health Monitoring

1. INTRODUCTION

The application of Statistical Pattern Recognition (SPR) in the field of Structural Health Monitoring (SHM) has
received significant attention by researchers over the past few decades, especially in the area of vibration analysis
of structures. There has been considerable research in the application of various pattern recognition methods
for damage detection1–3 while a more formal presentation of the Statistical Pattern Recognition Paradigm can
be found in Refs. 4 and 5. In SPR, damage is detected through changes or outliers in statistical features that
are obtained directly from the acquired data rather than by changes in estimates of structural properties. As
a result, one of the advantages of SPR is that limited to no knowledge of the structural properties is required.
This allows for methods and algorithms that are modular and eliminate the uncertainty around developing a
structural model and estimating its parameters.

A mathematical model that is very widely used in SHM and especially under the Statistical Pattern Recogni-
tion Paradigm is the Continuous Wavelet Transform (CWT). Research on the application of the CWT for SHM
includes the observation of changes in the wavelet coefficients under different loading conditions,6,7 the extraction
of features from the CWT8–10 and the combination of the CWT with other signal processing methods such as
Empirical Mode Decomposition (EMD).11 The literature on the application of wavelets in the field of SHM is so
rich that has spurred the publication of several review papers. Comprehensive reviews on the intersection of the
wavelet transform and SHM can be found in Refs. 12, 13, or 14.

An important application of SPR is the structural damage detection. The patterns are used to track the
change of the structures and to detect damages. The existing works on the statistical detection of structural
damages can be classified into two categories. The first group uses the time-domain information to detect
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damage. For example, the algorithms in Refs. 15 and 16 fit the structural responses with the autoregressive
moving average (ARMA) model and then perform hypothesis testing on the model coefficients. Ref. 17 models
the ARMA coefficients as a Gaussian mixture. The damage is diagnosed by measuring the distance between
the Gaussian mixtures fitted by the undamaged and damaged data. The second group of the structural damage
detection algorithms use the frequency-domain information as the damage sensitive features. Examples include
Refs. 18, 19 and 20. Our proposed damage detection algorithm is within this group. Ref. 10 uses the wavelet
parameters as the damage sensitive features, which are similar to our work. However, it focuses on the change
of the frequencies but we use the wavelet coefficients as statistical inferences. Using statistical inferences to
detect structural damages allows us to design the algorithm without considering the specific structural models.
Refs. 21, 22, and 23 introduces a new set of damage detectors that can make decision in a sequential manner.
This new set of detectors minimize the detection delay, which is significant in the damage detection problem.
All of these three algorithms use the time domain information as the features. In this paper, we propose a new
online damage detector that uses the frequency domain information as the damage sensitive features.

Our first contribution in this paper is formulating the Continuous Wavelet Transform model and proposing the
maximum likelihood estimator of the CWT coefficients. This is discussed in Section 2. The second contribution is
a sequential structural damage detection algorithm that uses the features from CWT as the statistical inferences.
We also discuss how to use the Principal Component Analysis to choose the truly sensitive features and to remove
noises. The damage detection algorithm is outlined in Section 3. Section 4 is our third contribution: validating
the proposed algorithms with numerical simulations and showing the proposed damage detector is asymptotically
optimal. Section 5 concludes the paper.

2. STATISTICAL MODEL FORMULATION

Let a (t) be the acceleration response of the system, where t denotes time. The Continuous Wavelet Transform
(CWT) of the signal a (t) will be denoted as Wa (u, s) and is defined as:

Wa (u, s) =

∞∫
−∞

a (t)
1√
s
ψ∗
(
t− u
s

)
dt (1)

where u refers to shift (a measure of time), s refers to wavelet scale (a measure of frequency) and the (·)∗ operator
is the complex conjugate. Let yt (s) be the wavelet coefficients at shift t which will be referred to as wavelet
“slice” at time t.

yt (s) = Wa (t, s) (2)

Let us define a random process of wavelet scale, Ψ (s), that represents the fundamental shape of the wavelet
slices and only depends on the damage state of the structure. The realizations of Ψ (s). at each time t are
denoted by Ψt (s).

Assumption 1. The realizations of Ψ (s) can be written as:

Ψt (s) = Ψ (s) + εt (s) (3)

where Ψ (s) is an unobservable function of wavelet scale and its shape only depends on the damage state of the
structure.

Define the functional F for any function f such that:

F (f ; a, b, c) (s) = a · f (b · s+ c) (4)

Assumption 2. Each wavelet slice, yt (s) can be expressed as:

yt (s) = F (Ψ; at, bt, ct) (s) + ∆y (s)

= atΨ (bt · s+ ct) + ∆y (s) (5)
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where at, bt and ct are, generally unobservable, scalar parameters that represent the effect of the input motion on
the system’s response, such as amplitude and frequency content, and ∆y (s) is a function of scale that represents
effects not captured by the first term.

Null Hypothesis: while the structure is undamaged, the realizations of Ψ (s) are drawn from the same
distribution. When damage occurs, the behavior of the structure changes and, thus, the shape of Ψ̄ (s) is
assumed to change. Since Ψ̄ (s) is unobservable, the aforementioned change in shape is manifested as a change
in the distribution of Ψ (s).

Combining Equations 3 and 5, we can obtain the following expression for the wavelet coefficients at time t:

yt (s) = atΨ (bt · s+ ct) + atεt (bt · s+ ct) + ∆y (s)

= F
(
Ψ; at, bt, ct

)
(s) + F (εt; at, bt, ct) (s) + ∆y (s) (6)

Without loss of generality, we can define the slice at time t0 as a reference slice. The reference slice will serve as
a baseline for the model and, thus, would have to correspond to the undamaged state of the structure. In the
present analysis, the reference slice is selected manually so that it is relatively smooth and its general shape is
representative of the shape of the majority of the rest of the slices. Equation 5 can be written for the reference
slice:

y0 (s) = F (Ψ; a0, b0, c0) (s) + ∆y (s)

= a0Ψ (b0 · s+ c0) + ∆y (s)

= a0Ψ (b0 · s+ c0) + a0ε0 (b0 · s+ c0) + ∆y (s) (7)

Solving Equation 6 for Ψ (s) and substituting in Equation 7, we obtain:

y0 (s) =
a0

at
yt

(
b0
bt
s+

c0 − ct
bt

)
− a0εt (b0s+ c0)− a0

at
∆y

(
b0
bt
s+

c0 − ct
bt

)
+ a0ε0 (b0s+ c0) + ∆y (s) (8)

Define the following:

ãt =
a0

at
(9a)

b̃t =
b0
bt

(9b)

c̃t =
c0 − ct
bt

(9c)

ε̃t (s) = a0ε0 (b0s+ c0)− a0εt (b0s+ c0) (9d)

∆̃y (s) = ∆y (s)− ãt∆y
(
b̃ts+ c̃t

)
(9e)

Equation 8 then becomes:

y0 (s) = ãtyt

(
b̃ts+ c̃t

)
+ ε̃t (s) + ∆̃y (s) (10)

The scalar parameters ãt, b̃t and c̃t can be estimated from the data and using the reference slice y0 (s).

In order to obtain an estimate for the transformed error term, ε̃t (s), the wavelet slices can be transformed
as follows:

y′t (s) = ãtyt

(
b̃ts+ c̃t

)
(11)
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As a result, and since the transformed error term, ε̃t (s) is a zero-mean process, a plug-in estimate for the

transformed unmodeled effects (bias) term, ∆̃y (s), can be obtained by:

∆̂y (s) =

t=N∑
t=1

y0 (s)− y′t (s) (12)

An estimate for the transformed noise terms, ε̃t (s) can be obtained as:

ε̂t (s) = y0 (s)− y′t (s)− ∆̂y (s) (13)

The statistical model shown in Equation 6 implies that the input motion has three effects on the “fundamen-
tal” shape function, Ψ (s): a uniform scaling, a stretch and a shift in the wavelet scale domain. It is, by design,
a simple model that captures the intuitive effects of a ground motion on the response of a structure, accounting
for the temporally-varied amplitude and frequency content of an earthquake. Even though the function Ψ (s)
cannot be observed or extracted from the observations, the transformation presented in Equation 11 maps all the
wavelet slices to the same reference in terms of signal energy and bandwidth. The transformed error terms, as
well as the estimated model parameters, can be used to test whether the slices are indeed drawn from the same
distribution. The case where not all slices are drawn from the undamaged distribution implies that damage has
occurred in the structure.

2.1 Estimation of the model parameters

The model parameters, namely the parameters defined in Equation 9 plus the transformed noise covariance
matrix, will be estimated using Maximum Likelihood Estimation. Specifically, the parameters will be estimated
by minimizing the negative log-likelihood function, as shown in Equation 14.[

â, b̂, ĉ, ∆̂y, Σ̂
]

= arg min
a,b,c,∆y,Σ

−` (y0|y1, y2, . . . , yN ; a, b, c,∆y,Σ) (14)

Assumption 3. The transformed error terms, ε̃t (s), are independent, with respect to the time sample, and
identically distributed Gaussian Processes.

Assumption 3 is very important for the estimation of the model parameters. The assumption of independence
simplifies the modeling of the joint likelihood of the different slices. Furthermore, when the slices not to be
assumed temporally independent, the model would be biased towards the particular excitation that the data
was generated from. Assuming that the error terms are Gaussian Processes also simplifies the solution to the
optimization problem posed in Equation 14. Based on Assumption 3, Equation 14 can be written as:

[
â, b̂, ĉ, ∆̂y, Σ̂

]
= arg min
a,b,c,∆y,Σ

N∑
i=1

−` (y0|yi; ai, bi, ci,∆y,Σ) (15)

Finally, since the error terms are assumed to be Gaussian, Equation 15 can be further written as:

[
â, b̂, ĉ, ∆̂y, Σ̂

]
= arg min
a,b,c,∆y,Σ

N∑
i=1

−M
2
− 1

2
log det Σ− (16)

− 1

2
(aiyi (bis+ ci)− y0 −∆y)

T
Σ−1 (aiyi (bis+ ci)− y0 −∆y)

At a proof-of-concept level, the following recursive algorithm was used in the present analysis in order to decouple
the terms of the summation in Equation 16 and facilitate the numerical estimation of the parameters:

1. Initialize ∆y and Σε̃ to an uninformed prior. In the present analysis, ∆y(0) = 0 and Σ
(0)
ε̃ = I, where I is

the M ×M identity matrix.

Proc. of SPIE Vol. 9435  94350S-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/30/2015 Terms of Use: http://spiedl.org/terms



2. For t = 1 . . . N , calculate the parameters â
(k+1)
t , b̂

(k+1)
t , ĉ

(k+1)
t using Maximum Likelihood Estimation.

3. Calculate the transformed slices from Equation 11.

4. Calculate the bias term from Equation 12.

5. Calculate the error terms from Equation 13.

6. Estimate the covariance matrix from the error terms.

7. Repeat Steps 2 through 6 until the bias term and covariance matrix converge.

In the outlined algorithm, the superscripts in parentheses refer to each algorithm iteration.

It should be noted that this algorithm need only be applied to a reference signal where the structure is a
priori known, or assumed, to be undamaged. Once estimated, the covariance matrix and bias term will refer to
the undamaged state of the structure and do not need to be estimated again when the model is applied to a
record coming from the same structure but with unknown damage state.

The outlined algorithm requires the estimation and inversion of the covariance matrix of generally high-
dimensional random variables. The estimation of the covariance matrix is a well-studied problem and several
parametric and non-parametric estimation methods exist in the literature.24–26 The sample covariance matrix
was found to be numerically unstable, especially after a few iterations of the presented algorithm and did not
converge. To overcome this problem, a parametric covariance function was fit to the data and its parameters
were estimated by maximizing the marginal log-likelihood of the data. In the results presented in subsequent
sections, a Matern covariance function was used and the fitting was performed using the Gaussian Processes for
Machine Learning (GPML) toolbox, which is based on Ref.27.

3. DAMAGE DETECTION ALGORITHM

A typical damage detection process contains three subcomponents: (i) collecting structural responses; (ii) ex-
tracting the damage sensitive features; and (iii) detecting damages via statistical inferences.28 In this proposed
algorithm, the structural responses are sequentially obtained from multiple sensors. In (ii), we estimate the
transformed noise terms ε̂t(s) based on Equation 13 and other relative equations, as we have discussed in pre-
vious sections. Unlike the algorithms in Refs. 21 and 28, which use the fitted model coefficients as the damage
sensitive features (DSFs) directly, we use Principal Components Analysis (PCA) to select and extract the DSFs.
PCA helps to remove the irrelative information and to choose the truly sensitive features. In (iii), the sequential
detectors identify the damages in a Bayesian framework.

3.1 Feature Extraction

In the proposed damage detection algorithm, the DSF extraction consists of two steps: (i) estimation of the
transformed noise term ε̂t(s) and (ii) extraction of the principal components. For notation convenience, we will
use xs(t) to denote the estimate of the transformed noise term ε̂t(s). To find xs(t), we can apply Equation 11 to
Equation 13 and Equation 16.

Let X(t) ∈ Rp denote a vector that contains the transformed noise terms of p wavelet scales at time t,

i.e. X(t) = [x1(t), x2(t), . . . , xp(t)]
T

. In many cases, only a subset of the p wavelet scales are sensitive to the
damages. The insensitive wavelet scales are irrelative to the damage detection and may weaken the detection
performance. Therefore, we should only use these scales that are sensitive to the damages as our DSFs. In this
detection algorithm, we use PCA to find these damage sensitive wavelet scales. PCA uses a small number of
dimensions that are sensitive to damage to represent the n observations in p dimensional space. Each of the
dimensions found by PCA is a linear combination of the transformed noise terms of p wavelet scales. PCA helps
to reduce the noise of the data and to capture the most sensitive wavelet scales.

The first principal component is the linear combination of the noises of wavelet scales

z1(t) = φ11x1(t) + φ21x2(t) + · · ·+ φp1xp(t) = φT1 X(t) (17)
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where z1(t) is the first principal component at time t and φ11, . . . , φp1 are the loadings of the first principal
component. We use φ1 = (φ11, . . . , φp1)T to denote the loading vector of the first principal component. The
loadings have to satisfy that

p∑
i=1

φ2
i1 = 1. (18)

Equation 17 projects a p-dimensional data set to a single value. As discussed in Ref. 29, the first principal
component captures the largest variance of the original data set. To find the first principal component loading
vector, we have to solve the following optimization problem over n observations:

max
φ11,...,φp1

 1

n

n∑
t=1

(
p∑
k=1

φk1xk(t)

)2
 subject to

p∑
k=1

φ2
k1 = 1. (19)

There are rich literatures on how to solve the optimization problem above and several well-known algorithms are
discussed by Refs. 29 and 30.

After finding the first principal component z1(t), we can find the second principal component that captures the
largest variances that are uncorrelated with z1(t). The second principal component is also a linear combination
of the transformed noises and has the form as

z2(t) = φ12x1(t) + φ22x2(t) + · · ·+ φp2xp(t) = φT2 X(t) (20)

where φ2 is the loading vector of the second principal component and satisfies the same constraint in Equation
18. In addition, since z2(t) is uncorrelated with z1(t), φ2 has to be orthogonal to φ1, i.e. φT1 φ2 = 0. The
second principal component can be found with the same method as the first principal component. We can
continue the process above to find p principal components. As discussed in Ref. 29, the variance explained by
each principal component is monotonically decreasing. It means that the first principal component captures
the largest variance. The second principal component explains the largest variance among the rest principal
components and so on. Many works have shown that the first several principal components can explain most
variances of the original data set.29,31 Therefore, rather than using the p-dimensional transformed noise as the
DSF for damage detection, we only need to use q principal components as the DSF, where q is less than p. In
Section 4, we will discuss how to pick up the number q.

3.2 Damage Detection

Our primary interest in damage detection problem is estimating the damage time. Assume that the damage
occurs at a random time λ with a prior distribution π(λ). Our goal is to detect this damage as quickly as possible.

Because of Assumption 3, we can assume that X(t) is independently and identically distributed (i.i.d) with
a multivariate Gaussian distribution with mean µp ∈ Rp and covariance matrix Σp ∈ Rp×p. As discussed in
previous section, each principal component is a linear combination of the elements of X(t). Therefore, zi follows
a single-variant Gaussian distribution with mean µi = φTi µp and variance σ2

i = φTi Σpφi. Let Z(t) denote the
vector that contains q principal components as the DSF, i.e. Z(t) = [z1(t), . . . , zq(t)]. Then Z(t) is i.i.d with a
multivariate Gaussian distribution, which is shown below:

Z(t) ∼ N (µz,Σz), (21)

µz = [φT1 µp, . . . , φ
T
q µp]

T , (22)

Σz =


φT1 Σpφ1 0 . . . 0

0 φT2 Σpφ2 . . . 0
...

...
...

...
0 0 . . . φTq Σpφq

 . (23)
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The covariance matrix Σd is diagonal based on the fact that the principal components are uncorrelated with
each other.

Assumption 4. X(t) is i.i.d with density g when t < λ and is i.i.d with density f when t ≥ λ.

Both densities are obtained prior to the analysis from simulations or experiments. Since we use Z(t) as the
DSF, Assumption 4 is equivalently states that Z(t) is i.i.d with a Gaussian distribution gz when t < λ and is
i.i.d with the other Gaussian distribution fz when t ≥ λ. Both distributions can be estimated based on the data
of Z(t) empirically or transformed from the distributions of X(t).

Since our primary interest is detecting the damages, therefore, we apply compute the loading vectors based
on the damaged data set. A standard step before applying PCA is subtracting the means such that the data is
zero-mean. This step helps to avoid the case that different features have different magnitude. In our case, the
post-damaged distribution will be zero-mean, i.e µf = [0, 0, . . . , 0]T . In addition, the undamaged distribution
will have non-zero mean since the undamaged data are subtracted by the post-damaged mean as well. This does
not contradict with Assumption 3. In Assumption 3, we assume that X(t) has zero mean in undamaged status.
After PCA projection, Z(t) does not have zero mean since we subtract the post-damaged mean from X(t). The
loading vectors should be only computed once and then can be used directly. For every new observation, before
linear projection, we should subtract the post-damaged mean as well.

A sequence of DSFs up to the time n can be represented as Zn = (Z(1), Z(2), . . . , Z(n)). In the Bayesian
formulation, the joint distribution of λ and Zn is

P (λ,Zn) = π(λ)P (Zn|λ). (24)

If the damage occurs at time λ = k, based on our discussion above, we can assume Z(1), . . . , Z(k − 1) is i.i.d
with the Gaussian density gz and Z(k), . . . , Z(n) is i.i.d with the Gaussian density fz. Therefore, the likelihood
function is

P (Zn|λ = k) =

k−1∏
t=1

gz(Z(t))

n∏
t=k

fz(Z(t)). (25)

The posterior probability can be computed as

γn(k) := P (λ = k|Zn) =
P (λ = k,Zn)

P (Zn)

=
π(λ = k)P (Zn|λ = k)

P (Zn)

∝ π(λ = k)P (Zn|λ = k)

A detection problem has two constraints: the probability of false alarm, which is defined as

α = P (τ < λ),

where τ is the estimate of the damage time, and the detection delay, which is defined as

d = E(τ − λ|τ ≥ λ).

As discussed in Refs. 28 and 32, given a desired probability of false alarm α, the following detector minimizes
the detection delay d,

τ = inf{n : P (λ ≤ n|Zn) ≥ 1− α}, (26)

In our setup, given the most allowable false alarm rate α, we can declare damage and find the damage time when∑n
k=1 γ

n(k) is larger than 1− α at its first time.

Now we propose our sequential damage detection algorithm at each time n as follow:

1. Acquire the structural signal a(n).
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W gavity

leaning column

Figure 1: Schematic of the four-story steel moment frame used for the simulations. Figure reprinted from 35

2. Perform wavelet transformation and estimate the model parameters via the the maximum likelihood method
presented in Section 2.1.

3. Compute the transformed noise term xs(n) over all the wavelet scales.

4. Compute the DSF vector Z(n) by subtracting the post-damaged mean from the transformed noise vector
X(n) and then projecting the results to the principal component directions. The loading vectors φi are
pre-computed based on the experiments and simulations.

5. Compute the prior probability π(k) for 1 ≤ k ≤ n+ 1, where π(n+ 1) =
∑∞
k=n+1 π(k) = 1−

∑n
k=1 π(k).

6. Compute the likelihood for 1 ≤ k ≤ n+ 1 based on Equation 25.

7. Compute γn(k) = π(λ = k)P (Zn|λ = k) for 1 ≤ k ≤ n+1. Then normalize γn(k) such that
∑n+1
k=1 γ

n(k) =
1.

8. Declare the damage time estimate τ = n when
∑n
k=1 γ

n(k) ≥ 1− α at the first time.

4. NUMERICAL RESULTS

In this section, we validate the proposed algorithms for estimating wavelet coefficients and detecting structural
damages by using the structural responses from a four story structure. We explore how the detection delay
changes with different false alarm rates. In addition, we investigate how the number of principal components
affects the performance of the damage detection.

4.1 Description of Simulation

The algorithms described are applied to a simulated dataset of acceleration responses due to earthquake exci-
tation. The structure considered is a four-story steel moment-frame originally designed and tested by Lignos et
al.,33 as shown in Fig. 1. A Finite Element Model was developed and calibrated in OpenSees34 by the original
researchers. The Finite Element Model was subjected to a series of earthquakes under varied intensities and the
acceleration response at each floor was captured. The presence of damage was quantified by the moment-rotation
behavior at pre-defined “plastic-hinge” locations at the beams and columns of each story. A purely linear re-
lationship between moment and rotation indicates no damage and the presence of damage anywhere within a
story was taken to denote damage in the story.
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Figure 2: Transformed residuals for all floors in the undamaged (top row) and damaged (bottom row) state

The wavelet coefficients of the acceleration response at each floor are calculated using the Morlet wavelet.
The transformed residuals are calculated according to the previously described algorithm. The parameters of
the wavelet transform are estimated over p = 150 wavelet scales. Figure 2 shows the transformed residuals in
each floor for the undamaged and damaged state. It can be observed that in the undamaged state the residuals
are uniform over time and close to zero, while in the damaged state the distribution changes.

The damages are introduced to each floor independently. The damage time λ follows a geometric distribution
with the parameter ρ = 0.1, i.e. λ ∼ Geo(0.1). The structural responses a(t) are recorded from each floor
independently and simultaneously. In our simulation, we regard each floor as an independent object and discard
the correlation among floors.

4.2 Results and Discussion

The loading vectors of PCA are computed by the singular value decomposition algorithm. The number of
principle components is decided by the proportion of variance explained (PVE) by each principle component.
The PVE of the ith principle component is given by

PV E =

∑n
t=1

(∑p
j=1 φjtxj(t)

)2

∑p
j=1

∑n
t=1 x

2
j (t)

. (27)

Fig. 3 shows the PVE explained by the first ten principle components for ten different strong motions. The
first principle component captures around 45% of the variance and the first three principle components explain
about 90% variance.

Fig. 4 shows the expected delay against the false alarm rate from 0.5 to 10−15 over 300 iterations. As expected,
the algorithm detects the damage faster when the false alarm rate is larger. When α is reduced, the expected
detection delay increases. In addition, we can observe that the detector that uses 7 principal components has
the smallest detection delay in general. The reason of this behavior is that the cumulative variances are largest.
It means that more information can reduce the detection delay.

Ref. 32 proves that the optimal delay is

E[τ − λ|τ ≥ λ] =
| logα|

− log(1− ρ) + I
(28)

Proc. of SPIE Vol. 9435  94350S-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/30/2015 Terms of Use: http://spiedl.org/terms



1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Principal Component

P
V

E

(a) The proportion of variance explained by the first ten
principle components

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Principal Component

C
u

m
u

la
ti
v
e

 P
V

E

(b) The cumulative proportion of variance explained by
the first ten princple components
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where ρ is the parameter of the geometric prior and I is the Kullback Leibler (KL) divergence, which is defined
as

I =

∫
fz(x) log

fz(x)

gz(x)
dx. (29)

In our problem, both densities gz and fz are multivariate Gaussian distributions. Therefore, the KL divergence
becomes to

I =
1

2

(
tr(Σ−1

f Σg) + (µf − µg)TΣ−1
f (µf − µg)− k + log

(
detΣf
detΣg

))
, (30)

where µg and Σg are the mean and the covariance matrix followed by the density gz, µf and Σf are the mean
and the covariance matrix followed by the density fz, and k is the dimension of the distributions.

In our simulation, the means and covariance matrices are estimated empirically from the simulation. We
compute the KL divergences according to Equation 30 and their values are shown in Table. 1. From Table. 1, we

Number of
Principal Component KL divergence (I)

3 1.5633
5 2.2023
7 2.4045

Table 1: KL divergence of each number of principal component

can see that when more principal components are used as the DSF, the KL divergence is larger. It means that
the distributions before and after damage are more different. Based on Equation 30, we can also find out that,
when more principal components are used as the DSF, the expected detection delay is smaller. This observation
is consistent with what we found in Fig. 4.

Fig. 5 plots the expected delay divided by − logα as a function of − logα for α from 0.5 to 10−15. The dash
line is the asymptotical limit. We can observe that as α→ 0, the expected delay coverages to the asymptotical
limit. It shows that our proposed detector is asymptotically optimal, which is consistent with the results in
Refs. 28 and 32. This figure also shows a consistent result that the detector that uses more principal components
as the DSF has better performance.
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Figure 5: Plots of the slope 1
− logαE[τ − λ|τ ≥ λ] against − logα. The dash line is the asymptotical limit.
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5. CONCLUSION

In this paper, we have formulated the continuous wavelet transform model and developed an algorithm to
estimate the CWT coefficients. This algorithm computes the CWT coefficients from the structural responses
without knowing the information of structures. In addition, we have proposed a damage detection algorithm
that uses the CWT noise terms as the statistical inferences. Unlike many other algorithms that use the features
from the frequency-based model directly, we have used PCA to select and extract the features that are most
sensitive to the damage. As a sequential detector, it continuously takes new principal components as the DSF
and reports decisions.

The proposed algorithms have been validated by the simulation data. The results showed that the proposed
detector had the minimum detection delay for a given probability of false alarm. In addition, the detector was
asymptotically optimal as it converged to an asymptotical bound when the false alarm trends to zero. Also,
we discovered that when more principal components were used as the DSF, the expected detection delay was
reduced.
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