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Abstract—Recently, a rapidly penetration of distributed gen-
eration raises various issues. One of the key issues is frequent
distribution grid re-configuration, which is hard to detect based
on traditional approaches. Wrong topology information causes
wrong control signal, making fast changing smart grid prone
to go over stability boundaries and to collapse. To ensure
system robustness, we propose a new data-driven re-configuration
approach, thanks to recently progressively deployed larger sensor
networks in distribution systems by utilities. Specifically, an In-
formation Theory based algorithm, Chow-Liu algorithm, is used

based on a proof for assumption and verification in distribution
systems. Simulation results show highly accurate re-configuration
estimation in IEEE standard distribution test systems.

Keywords—Power Distribution Network, Topology/Structure
Learning, Information Theory, and Voltage Measurement

I. INTRODUCTION

Initiated by the U.S. government, the rapid-expanding
smart grid aims at evolving into a sustainable modern grid.
For this purpose, distributed energy resources (DER), such as
photovoltaic and storage devices, are rapidly integrated into
the distribution power grid for renewable generation. This is
because generating power inside distribution power grid can
not only create more sustainable energy sources, but can also
create cheaper electricity and reduce losses due to shortened
path between generation and end consumer, etc.

While producing new opportunities, the large-scale pene-
tration of distributed generation is also posing new challenges.
Different than transmission power grid where topology is with
limited changes, a distribution grid can have regular topology
changes due to ad-hoc connection of many plug-and-play com-
ponents. Even worse, a distribution system operator usually
lacks specific topology information, e.g., DG connection status,
as many of the DERs do not belong to the utility.

Wrong topology estimate can cause critical issues such
as wrong calculation in the dangerous reversions of power
flow, incorrect description of fast dynamic variation of voltage
profiles, and line work hazards, etc. Therefore, a highly active
and accurate topology estimation process [1] is necessary in
providing bases for distribution automation in the operation
and control of smart distribution grid. This calls for an auto-
matic, reliable, and low cost way to detect status changes.

Systematic topology error identification methods exist in
the transmission grid based on a post-state estimation (SE)
procedure [2]. Specifically, a topology error is detected if
measurements associated with a branch or a bus are flagged as
outliers by a SE-based residual test. In traditional transmission
network, it is possible to use the topology identification pro-
cess described above, based on the belief that no significant
topology change appears in a short time with limited non-

conforming errors. However, such a belief will no longer
hold in smart grid, where frequent topological changes appear,
which may lead to large amount of topology errors, making
the method above hard to identify all of them [3]–[5].

To resolve the problems, one can let utility company install
monitoring devices on all topology changing components (e.g.,
switches) to achieve distribution automation. But this process
will take a long time. One can also assume the availability
of all possible switch connectivity map and search for the
right combination [6]–[8]. Additionally, state estimation can
be employed by assuming the availability of admittance matrix
[9], [10]. Finally, power flow examination can be used with
known admittance matrix [11].

Unfortunately, methods above require the knowledge of
circuit breakers and/or admittance matrix, which may be
unavailable in newly added or reconfigured partial distribution
network. Even if there is such knowledge, it may be outdated
or wrong due to human interaction without information up-
dating, i.e. plug-and-play components in the distribution grids.
This makes those methods unable to deal with large topology
uncertainties in many smart grid scenarios.

Nowadays, the most reliable information usually come
from the smart sensors at household level, thanks to recent
advances in communications, sensing, computing and control,
as well as the targeted investments toward deploying advanced
meter infrastructures (AMIs) and synchrophasors, creating
drivers and sources of data previously unavailable in the
electric power industry [12], [13]. Therefore, in this paper,
we restrict us to have only end-user data [14], [15], such as
real & reactive powers and voltage magnitude measured by
smart meter [16]–[19]. We also conduct analysis with voltage
phase measured for the future when micro phasor measurement
unit (µPMU) [20], [21] has been widely installed. We aim at
helping these devices identify the physical system in which
they operate, discover their neighbor buses, and reconfigure
the communication and control infrastructure in order to being
able to perform assigned tasks.

Instead of assuming the knowledge of circuit breaker
conditions or estimating system admittance matrix [3], we only
use pairwise mutual information of voltage phasors. Historical
data are used for mutual information calculation instead of
using only a single data point (current method) [22]. We prove
that voltage phasors data can be used to find the optimal
topology connection via the Chow-Liu algorithm, enabling the
identification of a large amount of plug-and-play devices based
on their local sensor data against the ever-changing hard-to-
predict uncertainties in smart grids.

Whereafter, the performance of the data-driven method is



verified by simulations on the standard IEEE 8- and 123-
bus distribution test cases [23], [24]. Provided with enough
historical data, the data-driven topology estimate outperforms
the estimate from the traditional approach and approaches in
recent paper [3]. As a highlight, error propagation in other
approaches does not happen in our approach, due to the fact
that our detection does not depend on known topology.

The rest of the paper is organized as follows: Section II
introduces the modeling and the problem of data-driven topol-
ogy identification. Section III uses a proof to justify the
applicability of the Chow-Liu algorithm for distribution system
topology re-configuration. A detailed algorithm is illustrated as
well. Section IV evaluates the performance of the new method
and Section V concludes the paper.

II. SYSTEM MODELS

To better formulate the topology reconstruction prob-
lem, we need to describe the distribution network topology
and data. A distribution network is characterized by buses,
V = {1, 2, . . . , N}, and by branches (power lines), E =
{(i, j), i, j ∈ V}. Measurement data at bus i and time t can
be represented as follows: active power pi(t) ∈ R, reactive

power qi(t) ∈ R, and voltage vi(t) = |vi(t)|ejθi(t) ∈ C,
where |vi(t)| ∈ R denotes the voltage magnitude in per unit
and θi(t) ∈ R denotes the voltage phase angle in degree.
These measurements are in the steady state and all voltages
and currents are sinusoidal signals at the same frequency.

The problem of distribution grid topology reconstruction is
defined as follows:

• Problem: data-driven topology reconstruction based on
voltages

• Given: a sequence of historical measurements
vi(t), i ∈ V , t = 1, . . . , T and a partially known grid
topology, as shown in Fig. 1

• Find: the local grid topology E in the dashed box in
Fig. 1

III. INFORMATION THEORY-BASED TOPOLOGY

ESTIMATION

Recent deployed smart meters provide a large amount of
highly accurate time-series data. We want to utilize these
data to reconstruct grid topology. One way to represent the
historical data is using a probability distribution. For example,
the joint distribution of voltage measurements is

P (V) = P (V2, V3, . . . , VN )

= P (V2)P (V3|V2) . . . P (VN |V2, . . . , VN−1), (1)
where Vi ∈ C is a continuous complex random variable that
represents the voltage measurement vi(t). Bus 1 is omitted
from this joint distribution because it is the slack bus with fixed
voltage measurement over time, i.e. 1∠0. A distribution system
network usually has a radial structure. Also, the correlation
between interconnected neighboring buses are higher than that
of non-neighbor buses. Therefore, a reasonable approximation
of (1) is to assume that a nodal measurement depends on its
neighbors’ measurements. Subsequently, (1) is simplified as

P (V) ≈ Pt(V) =

N
∏

i=2

P (Vi|Vr(i)), (2)

where r(i) is the parent bus1 that connects with bus i.
P (V2|Vr(2)) is defined to be equal to P (V2). Such simplifi-
cation is called product approximation. After this definition,

1In a tree graph, the parent bus is defined as the bus that is closer to the
feeder.
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Fig. 1. 123-bus system: the framework of data-driven state estimation.

finding the grid topology is now equivalent to finding the
conditional distribution Pt(V) that best approximate the joint
distribution P (V).

The Chow-Liu algorithm has been shown as an optimal
algorithm that finds the best product approximation of P (V)
[25]. It uses the mutual information of all possible bus pairs
within the network and finds maximum weight spanning
tree that maximizes the overall mutual information. Mutual
information, an information theory metric that measures the
mutual dependence of two random variables, has been widely
used in many fields, such as communication [26], natural
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Fig. 2. (n+ 1)-bus system: depth is 3.

language processing [27], and biomedical engineering [28].
Mutual information measures how similar the joint distribution
of two random variables, p(Vi, Vj), is to the products of the
individual distributions, p(Vi)p(Vj). For continuous random
variables, mutual information is defined as [29]

I(Vi, Vj) =

∫

Vi

∫

Vj

p(vi, vj) ln

(

p(vi, vj)

p(vi)p(vj)

)

dvidvj . (3)

Alternatively, mutual information can be computed using en-
tropy as

I(Vi, Vj) = H(Vi) +H(Vj)−H(Vi, Vj), (4)

where the entropy H(Vi) is defined as

H(Vi) = −

∫

Vi

p(vi) ln(p(vi))dvi,

and H(Vi, Vj) denotes entropy of the joint distribution [29]. In
Theorem 1, we prove that the Chow-Liu algorithm is suitable
for the distribution power grid.

Theorem 1. In a distribution power grid with tree structure,
the Chow-Liu algorithm finds the optimal product approxima-
tion of P (V) and its associated topology connection.

Proof: Here we use a 3-bus system (the dashed box in
Fig. 2) to prove the conditional independence of voltages, i.e.
V2|V1 ⊥ V3|V1, which severs as the basis of applying the
Chow-Liu algorithm.

Let the current injection Ii ∈ C be a random variable for
i = 1, 2, 3 and be independent with others. Also, let yij ∈ C

denote the line admittance between bus i and bus j. yij = 0
when no single branch exists between two buses. Therefore,
the relationship between voltages and currents is:

[

y12 + y13 −y12 −y13
−y12 y12 0
−y13 0 y13

][

V1

V2

V3

]

=

[

I1
I2
I3

]

.

When V1 = v1, rewriting the relationship above leads to
[

−y12 −y13
y12 0
0 y13

]

[

V2

V3

]

=

[

I1 − v1(y12 + y13)
I2 + v1y12
I3 + v1y13

]

.

As the first row is redundant, the linear system turns to

V2 =
I2
y12

+ v1, V3 =
I3
y13

+ v1. (5)

Since I2 and I3 are independent, V2 and V3 are independent
conditioning on V1, i.e. V2|V1 ⊥ V3|V1.

Next, we extend the conditional independence to a more
general network. For the grid shown in Fig. 2 (excluding Bus
m), there are n buses. n− 1 buses have a common neighbor,
namely Bus 1. Using similar approach as the 3-bus system
example, given V1 = v1, we can find the following equation
for each bus i,

Vi =
Ii + v1y1i

yii
, i = 2, · · · , n. (6)

This equation has a consistent format as (5) since yii = y1i
in current setup. With the same assumption that each current

injection Ii is independent with others, we can conclude that
Vi|V1 is independent with Vj |V1 for i, j = 2, . . . , n and i 6= j.

When Bus m is attached to Bus n, the new relationship
between currents and voltages is
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For Bus 2 to Bus n − 1, the proof in the first part, i.e.
(6), still holds. The only exception is determining if the tree
dependence still holds for Bus n, which is now connected with
Bus m. To explore the conditional independence, between Bus
n and Bus i ∈ {2, · · · , n− 1}, we need to use the following
relationship extracted from the formula above.

In + v1y1n = ynnVn − ynmVm, (7)

Im = −ynmVn + ymmVm. (8)

Since Bus m only connects with Bus n, ymm = ynm. Further,
ynn = ynm + y1n by the definition of admittance matrix.
Hence, by combining (7) and (8), we have

In + v1y1n + Im = ynnVn − ynmVm

−ynmVn + ymmVm

= y1nVn,

Vn =
In + Im + v1y1n

y1n
. (9)

Since the current injection is independent at each bus, Ii ⊥ Ij
for 2 ≤ i ≤ n−1 and j = n,m. Then, In+Im is independent
with Ii as well. Therefore, Vn|V1 is independent with Vi|V1

due to (6) and (9).
In conclusion, this proof can be easily extended to the case

where each bus has one bus connected, other than Bus 1. If
each bus has over one bus connected, we can aggregate these
buses into a single bus and use the proof above to show the
conditional independence of voltage phasors.

With the conditional independence of buses, via mutual
information, the Chow-Liu algorithm finds the optimal approx-
imation to P (V), Pt(V).

To illustrate the steps of the Chow-Liu algorithm, we
summarize them in a flow chart in Fig. 3 as well as an
algorithm table at the end of this section.

Historical Data
vi(t), i ∈ V , t = 1, . . . , T

Compute mutual
information

using (4)

Sort
mutual information

in descent order

Find maximum weight
spanning tree using mutual

information

Topology Ê

Fig. 3. Flow chart of the proposed approach.



One key step in the flow chart above is to compare the
mutual information. We use the following lemma to illustrate
why such concept is important to find the correct topology.

Lemma 1. In a distribution network with tree structure
and conditional independence assumption in Theorem 1,
I(Vj , Vi) ≥ I(Vj , Vk) given j, k ∈ r(i), k /∈ r(j) and
j /∈ r(k).

Proof:

I(Vi, Vj , Vk) = I(Vi, Vj)− I(Vi, Vj |Vk)

= I(Vj , Vk)− I(Vj , Vk|Vi).
Since Vj |Vi is independent with Vk|Vi, the conditional mutual
information I(Vj , Vk|Vi) is zero. Then we have

I(Vi, Vj) = I(Vj , Vk) + I(Vi, Vj |Vk).
Due to the fact that mutual information is always non-negative,
we have

I(Vj , Vi) ≥ I(Vj , Vk).

According to Lemma 1, buses have much higher mutual
information with their neighbors. In next section, we will use
the numerical example to demonstrate this lemma. By using the
mutual information as the weight and Theorem 1, a maximum
weight spanning tree will find a highly accurate topology of a
distribution grid, making the Chow-Liu algorithm suitable for
the smart grid topology identification.

Algorithm 1 Distribution Grid Topology Reconstruction

Require: vi(t) for i = 2, . . . , N , t = 1, . . . , T
1: for i, j = 2, . . . , N do
2: Compute mutual information I(Vi, Vj) using (4) based

on vi(t).
3: end for
4: Sort all possible bus pair (i, j) into nonincreasing order

by I(Vi, Vj). Let Ẽ denote the sorted set.

5: Let Ê be the set of nodal pair comprising the maximum

weight spanning tree. Set Ê = ∅.
6: for (i, j) ∈ Ẽ do

7: if cycle is detected in Ê ∪ (i, j) then
8: Continue
9: else

10: Ê ← Ê ∪ (i, j)
11: end if
12: if |Ê | == N − 2 then
13: break
14: end if
15: return Ê
16: end for

Step 6-16 build a maximum spanning tree using pair-
wise mutual information as the weight. This algorithm is
modified from the well-known Kruskal’s minimum weight
spanning tree algorithm [30], [31], which has a running time
of O((N−2) log(N−1)) for a radial distribution network with
N buses. Therefore, the proposed algorithm can efficiently
reconstruct the topology with low computational complexity.
As our detection method does not depend on known topology,
error propagation does not happen in our approach.

IV. SIMULATION AND RESULTS

The simulations are implemented on the IEEE PES distri-
bution networks for IEEE 8-bus and 123-bus networks [32].
To better visualize the connection of distribution grid topology
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6 8

Fig. 4. 8-bus system.

and the graphical tree, we transform the original power grid
maps to tree graphs in Fig. 1 and Fig. 4. In these figures,
nodes represent buses and edges represent branches. In each
network, Bus 1 is selected as the slack bus. The historical
data have been preprocessed by the MATLAB Power System
Simulation Package (MATPOWER) [23], [24]. To simulate the
power system behavior in a more practical pattern, the load
profile from PJM [33] is adopted as the real power profile
in the subsequent simulation. The load data used are between
2008 and 2014 with a consistent data format. For the reactive
power (qi) at Bus i, we simulate it according to an independent
and identical uniform distribution, i.e.

qi(t) ∼ Unif(0.5µq
i , 1.5µ

q
i ) t = 1, · · · , T,

where the mean µq
i is given in the IEEE PES distribution

network. To obtain other measurements, i.e. |vi(t)| and θi(t),
we run a power flow to generate the states of the power system.
To obtain time-series data, we run the power flow to generate
hourly data over a year. T = 8736 measurements are obtained
at each bus. Finally, we only use the voltage measurement to
run the Chow-Liu algorithm.

To simplify the analysis, we model Vi at Bus i as a two-
dimensional real Gaussian random vector, instead of a complex
random variable,

[

R(Vi)
I(Vi)

]

∼ N (µi,Σi),

where R(Vi) and I(Vi) denote the real and imaginary parts of
Vi, µi ∈ R

2 denotes the mean vector and Σi ∈ R
2×2 denotes

the covariance matrix. For a k-dimensional Gaussian random
vector X ∼ N (µ,Σ), the entropy is defined as

H(X) =
k

2
(1 + ln(2π)) +

1

2
ln |Σ|.

In the simulation, the mean vector and the covariance matrix
at each bus are learned from historical observations.

A. Mutual information for topology detection
Fig. 5 shows the heat map of the mutual information matrix

for the IEEE 123- bus system. Since the mutual information
matrix is symmetric (I(X,Y ) = I(Y,X)), we only mark
branches in the lower triangular part. Circle represents the true
connection. Cross represents the connection between the row
and column indexes. If a circle is superposed by a cross, a
correct topology identification is claimed. From Fig. 5, we
observe that

• the first row and the first column have zero mutual
information because they are associated with the slack
bus, which has fixed voltage phasor, i.e. 1∠0.
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• the diagonal element has the largest mutual informa-
tion in each row because it is self-information [29].

• the coordinate associated with the true branch has the
large mutual information in each row (excluding the
diagonal element), which is zoomed-in inside Fig. 6.
This fact illustrates that using the pairwise mutual
information as the weight is consistent with the
physical behaviors.

Fig. 7 displays pairwise mutual information of two specific
buses, i.e. Bus 26 and Bus 109. We can clearly see that
the mutual information of the nodal pairs in E is very large
compared with others.

B. Successful Detection Rate
To summarize performances in various simulation cases,

we define the successful detection rate (SDR) as

SDR =

∑

i,j∈E
I

(

(i, j) ∈ Ê
)

|E|
× 100%,

where Ê denotes the estimated set of branches and |E| denotes
the size of the set E . Table I summarizes SDR on 8-bus and
123-bus systems. As shown in the first column, the proposed
algorithm can recover the entire 8-bus system without error.
When we try to reconstruct the 123-bus system, SDR is still
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TABLE I. SUCCESSFUL DETECTION RATE

8-Bus Network 123-Bus Network

Historical P 100% 98.4%
Simulated P 100% 100%
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Fig. 8. SDR comparison of the proposed algorithm and the Bolognani-
Schenato algorithm [3].

high, which is either 100% or 98.4%. Recovering a subnetwork
is very practices in distribution networks, where only a subarea
has unknown topology. We applied the algorithm to reconstruct
a subtree of the large-scale system, i.e. 57 buses out of 123
buses, we can always reconstruct the topology correctly.

In Fig. 8, we compare the proposed algorithm with the
algorithm in [3]. The x-coordinate represents the number
of edges that are needed to be identified. The y-coordinate
represents the successful detection rate. As the number of
unknown edges increases, our approach consistently has a
successful rate of 100%, while the other method’s detection
ability decreases. Additionally, we demonstrate that using
voltage magnitude measurements can achieve similar results
as using voltage phasor.

C. Sensitivity to the training data length
To explore how sensitive the propose algorithm is to

the number of samples, we run Monte Carlo simulation by
using 10 to 300 days data. The results are shown in Fig. 9.
We observe that when more than 50 days’ observations are
available, our algorithm can stably reconstruct the topology
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with historical data. For the simulated power profile, our results
show that only 20 days’ data are needed. These results reflect
that our algorithm can provide robust reconstruction.

V. CONCLUSION

In this paper, we propose a data-driven algorithm that re-
constructs the topology of distribution networks. Unlike exist-
ing approaches, which require the knowledge about branches,
our algorithm utilizes the newly available smart metering data
only. We formulate the topology reconstruction problem as
a joint distribution (voltage phasors) approximation problem.
We prove that the optimal approximation can be achieved by
applying the Chow-Liu algorithm via a comparison of pairwise
mutual information. We verify the proposed algorithm on both
IEEE 8- and 123-bus systems and results are highly accurate.
With real load profile, we achieve zero reconstruction error on
both 8-bus system and 123-bus system with partially known
topology. Finally, our algorithm can perfectly reconstruct the
partial topology with a limited amount of data.
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