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Abstract—The growing integration of distributed energy re-
sources (DERs) in distribution grids raises various reliability
issues due to DER’s uncertain and complex behaviors. With
a large-scale DER penetration in distribution grids, traditional
outage detection methods, which rely on customers report and
smart meters’ “last gasp” signals, will have poor performance,
because the renewable generators and storages and the mesh
structure in urban distribution grids can continue supplying
power after line outages. To address these challenges, we propose
a data-driven outage monitoring approach based on the stochastic
time series analysis with theoretical guarantee. Specifically, we
prove via power flow analysis that the dependency of time-series
voltage measurements exhibits significant statistical changes after
line outages. This makes the theory on optimal change-point
detection suitable to identify line outages. However, existing
change point detection methods require post-outage voltage dis-
tribution, which are unknown in distribution systems. Therefore,
we design a maximum likelihood estimator to directly learn the
distribution parameters from voltage data. We prove that the
estimated parameters-based detection also achieves the optimal
performance, making it extremely useful for fast distribution
grid outage identifications. Furthermore, since smart meters
have been widely installed in distribution grids and advanced
infrastructure (e.g., PMU) has not widely been available, our
approach only requires voltage magnitude for quick outage
identification. Simulation results show highly accurate outage
identification in eight distribution grids with 14 configurations
with and without DERs using smart meter data.

I. INTRODUCTION

The ongoing large-scale integration of distributed energy

resources (DERs) makes photovoltaic (PV) power devices

(renewable generation), energy storage devices, and electric

vehicles ubiquitous. Such a change transitions the urban power

grid into sustainable network and reduces the electricity cost

and transmission loss [1]. However, such a change also raises

fundamental challenges in system operations. For example, the

reverse power flow from residential houses renders the existing

protective architecture inadequate. Also, frequent plug-and-

charge electric vehicles will degrade power quality, causing

transformer overload and voltage flickers [2]. Because of

these changes on distribution grid, even a small-scale DER

integration could destabilize the local grid and cause reliability

issues for customers [3]. [4] shows that the distribution power

outages or blackouts caused by newly added uncertainties can

cause a loss of thousands to millions of dollars within one-

Y. Liao, C-W.Tan, R. Rajagopal are with Department of Civil and Environ-
mental Engineering, Stanford University, Stanford, CA, 94305 USA e-mail:
({yzliao, tancw, ramr}@stanford.edu). Y. Weng is with School of Electrical,
Computing, and Energy Engineering, Arizona State University, Tempe, AZ,
85287 USA e-mail: yang.weng@asu.edu.

hour, calling for newly designed fault diagnosis approach for

distribution grid operation.

The traditional power outage analysis in distribution grids

relies on passive feedback from customer reporting. Collected

into Customer Information System (CIS), such information

is processed in the Outage Management System (OMS) for

sending field crews to identify and repair the outage. Due to the

human-in-the-loop system design, delay and imprecise outage

information causes inefficient detection and slow restoration.

Therefore, smart meters with advanced metering infrastructure

(AMI) capability were installed recently to send a “last gasp”

message when there is a loss of power [5]. [6] shows additional

fault location, isolation, and service restoration (FLISR) tech-

nologies to reduce some negative impact and the interruption

duration.

However, the performance of the traditional methods and

the recent approaches above will be degraded as the growth of

DER penetration in distribution grids. For example, as shown

in Fig. 1, when there is no power flow in the distribution

circuit connecting to customers, the customer can still receive

power from the rooftop solar panels, battery storages, and EVs.

So the smart meter at the customer premises cannot report a

power outage. Also, the secondary distribution grids are mesh

networks in metropolitan areas [7], making a line outage,

which may be caused by faults (e.g, short-circuit or open-

circuit) and human activities, unnecessarily cause a power

outage. Furthermore, some advanced secondary distribution

grids have the “self-healing” capability, where the switches

are automatically open or closed to isolate outages, restore

power supply, and minimize customer impacts. However, it

is still important to detect, localize, and identify the out-of-

service branches for the situation awareness of distribution

system operators.

Fig. 1: An example of distribution grid outage. The red dashed

line is the out-of-service branch.

The power line outage identification in transmission grids

has received a surge of interest in the past decade, where

DC power flow approximation and phasor measurement units

(PMUs) are the most common approaches. For example, phase
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changes across all buses are compared with potential fault

events in [8]. In [9], a transmission grid is formulated as a

graphical model and phase angles are used to track the grid

topology change. A regularized linear regression is employed

to detect power outages in [10]. The approach in [11] com-

pares the branch admittance before and after outages. These

methods, however, cannot be directly used in the distribution

grid because 1) the DC approximation has poor performance

in distribution grids as many systems have non-negligible line

loss; 2) installing PMUs at all buses in distribution grid is

expensive and impractical; and 3) the topology information is

unavailable or inaccurate in distribution grids, because many

DERs do not belong to the utilities and their connectivities are

unknown to the system operators [12].

For resolving the issues above, we model voltage measure-

ment at each bus as a random variable, so that the distribution

grid is modeled as a multi-variate probability distribution. We

show that a line outage will lead to a change of the statistical

dependence between buses’ voltage data, and consequently,

a change of the joint distribution. Hence, the outage can

be discovered by detecting the change of the multivariate

probability distribution. A well-known method to sequentially

detect the probability distribution change is change point

detection method, whose objective is detecting an outage as

quickly as possible with a constraint of false detection rate

[13]–[15].

The change point detection methods have been applied to

detect outage in transmission grids [11], [16], [17]. How-

ever, they cannot be directly applied because of the practical

properties of distribution grids. Firstly, the outage patterns in

distribution grids are usually unpredictable. With the growth

of grid size, the possible post-outage distributions increase

exponentially. To overcome this drawback, we propose a

maximum likelihood method to directly learn the unknown

post-outage probability distribution parameters from voltage

data. Secondly, PMUs are not widely installed in distribu-

tion grids. Therefore, unlike the approaches in transmission

grids, we cannot use the voltage phase to identify outages.

We prove that voltage magnitude data, which are collected

from smart meters periodically, are sufficient to detect line

outages. Thirdly, the distribution grids usually have outdated

or inaccurate topology [18]. Thus, precisely finding the out-

of-service branch is challenging. We prove that the voltages of

two disconnected buses are conditionally independent, which

is subsequently used to find the line outage without knowing

the post-outage probability distribution.

The performance of our data-driven outage detection and

localization algorithm is verified by simulations on the stan-

dard IEEE 8- and 123-bus distribution test cases [19] and 6
European distribution grids [20] with 14 network configura-

tions. Three different real smart meter data sets are utilized for

generating voltage data via data interpolation, different outage

scenarios, and sensitivity analysis: Pacific Gas and Electric

Company (PG&E) data set that contains 110, 000 residential

households in North California, ADRES project data set [21],

[22] that contains 30 houses load profiles in Upper-Austria,

and Pecan Street data set, which has net load data of 345

houses with root-top PV panels in Austin, Taxes.

The main contributions of this paper are summarized below:

• A novel data-driven distribution grid line outage detection

method is proposed. For a given probability of false

alarm, the proposed outage detector is proved to have

optimal detection delay.

• Unlike many existing works that need to know outage

pattern in advance, we prove that our detection algo-

rithm can learn the post-outage statistics directly from

data. Hence, the implementation of our outage detector

does not require the prior knowledge of outage pattern.

Our numerical simulation demonstrates that utilizing the

estimated statistics based on post-outage data does not

degrade the detection performance.

• PMUs have not been widely installed in distribution grids.

By utilizing the small angle property of distribution grids,

we prove that the proposed method only needs to use

voltage magnitudes, which are usually available via smart

meters, to detect line outages.

• We also propose an outage localization algorithm that

finds the out-of-service branch after an outage event

is detected. A highlight is that the proposed outage

localization algorithm does not need to the distribution

grid topology, which is usually required in many existing

works.

• We validate the outage identification algorithm using

three real world data sets and eight distribution grids

with 17 network configurations. The numerical results

illustrate that the optimality of the proposed algorithm.

Additionally, multiple sensitivity analyses are conducted

to show the applicability of this new line outage detection

method in real world distribution grid operation.

The rest of the paper is organized as follows: Section II

introduces the modeling and the problem of the data-driven

power outage detection and localization based on voltage data.

Section III uses a proof to justify that the outage can be de-

tected by change point detection method. Also, we propose the

outage detection method for only using voltage magnitudes.

Section IV presents the outage localization method. A detailed

algorithm for outage detection and localization is illustrated as

well. Section V evaluates the performance of the new method

and Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In order to formulate the power outage detection problem,

we need to describe the distribution grid and its voltage data.

A distribution grid is defined as a physical network with buses

and branches that connect buses. For a distribution grid with

M buses, we use S = {1, 2, . . . ,M} to represent the set

of all bus indices. To utilize the time series voltage data,

the voltage measurement at bus i is modeled as a random

variable Vi. We use VS = [V1, V2, . . . , VM ]T to denote all

voltage random variables in the network, where T denotes the

transpose operator. At the discrete time n, the noiseless voltage

measurement at bus i is vi[n] = |vi[n]| exp (jθi[n]) ∈ C,

where |vi[n]| ∈ R denotes the voltage magnitude in per unit

and θi[n] ∈ R denotes the voltage phase angle in degrees.

All voltages are sinusoidal signals at the same frequency. We
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use v[n] = [v1[n], v2[n], . . . , vM [n]]T to denote a collection

of all voltage measurements in a network at time n. Thus,

v[n] is the realization of VS at time n. Also, we use

v
1:N = (v[1],v[2], . . . ,v[N ]) to denote a collection of all

voltage measurements in the network up to time N .

The problem to detect and localize line outages in a distri-

bution grid is defined as follows:

• Problem: data-driven power outage detection and local-

ization based on voltage measurements

• Given: a sequence of the historical voltage measurements

v
1:N up to the current time N

• Find: (1) the outage time and (2) the branches that are

out-of-service

III. OPTIMAL DISTRIBUTION GRID LINE OUTAGE

DETECTION

Voltage measurements usually have an irregular distribution

and are hard to be used for our goal of this paper. Therefore,

instead of using voltage measurements directly, we use the

incremental change of the voltage measurements to detect

outages, which is defined as ∆v[n] = v[n] − v[n − 1].
Accordingly, ∆v

1:N = (∆v[1],∆v[2], · · · ,∆v[N ]). We use

∆Vi to represent the voltage change random variable at bus

i and ∆VS to represent the voltage change random variables

of the entire system. In the following, we will prove that,

the probability distribution of ∆VS will be different after an

outage. In the following context, the operator \ denotes the

complement operator, i.e. A\B = {i ∈ A, i /∈ B}.

Assumption 1. In distribution grids,

• the incremental change of the current injection ∆I at

each non-slack bus is independent, i.e., ∆Ii ⊥ ∆Ik for

all i 6= k,

• the incremental changes of the current injection ∆I and

bus voltage ∆V follow Gaussian distribution with zero

means and non-zero variances.

The Assumption 1 has been adopted in many works, such

as [18], [23], [24]. In [18], the authors use real-data to

validate both assumptions. According to Assumption 1, ∆VS

follows a multivariate Gaussian distribution. With Assumption

1, we prove that the pairwise bus voltages are conditionally

independent if there is no branch between them.

Theorem 1. If the change of current injection at each bus is

approximately independent and no branch connects bus i and

bus k, the voltage changes at bus i and bus k are conditionally

independent, given the voltage changes of all other buses, i.e.

∆Vi ⊥ ∆Vk|{∆Ve, e ∈ S\{i, k}}.

Proof. For bus i, the current and voltage relationship can

be expressed as ∆Ii = ∆ViYii −
∑

e∈N (i) ∆VeYie with

Yii =
∑

e∈N (i) Yie, where Yie denotes the ieth element of the

admittance matrix Y and the neighbor set N (i) contains the in-

dices of the neighbors of bus i, i.e., N (i) = {e ∈ S|Yie 6= 0}.

If bus i and bus k are not connected, k /∈ N (i) and Yik = 0.

Given ∆Ve = ∆ve for all e ∈ S\{i, k}, the equation above

becomes to

∆Ii = ∆ViYii −
∑

e∈N (i)

∆veYie,

∆Vi =
1

Yii

(∆Ii +
∑

e∈N (i)

∆veYie). (1)

Similarly, ∆Vk = (∆Ik +
∑

e∈N (k) ∆veYke)/Ykk. With

the assumption of the current change independence, i.e.,

∆Ii ⊥ ∆Ik , ∆Vi and ∆Vk are conditionally independent

given ∆VS\{i,k}.

!"#$%&'()# *%+'$%&'()#

Fig. 2: An example of nodal voltages before and after a line

outage. λ denotes the outage occurrence time.

A branch admittance becomes zero when it is out-of-service.

The voltages at the two ends of this branch become condition-

ally independent. Hence, the probability distribution of ∆VS

is different before and after an outage because some elements

of the mean vector and covariance matrix will change. Let λ
denote the time that an outage occurs. We assume that ∆VS

follow a Gaussian distribution g with the mean µ0 and the

covariance matrix Σ0 in the pre-outage status (i.e., N ≤ λ)

and a different Gaussian distribution f with the mean µ1 and

the covariance Σ1 after any outage (i.e., N > λ). An example

is illustrated in Fig. 2. One way to find the outage time λ
is performing a sequential hypothesis test at each time N as

follows [13]:

H0 (pre-outage) : λ > N,

H1 (post-outage) : λ ≤ N.

Finding the outage time is known as the change point de-

tection problem. Usually, the line outage occurrence time is

unpredictable. Therefore, we assume the power outage time λ
as a discrete random variable with a probability mass function

π(λ). Now, we can use a Bayesian approach to find λ. In

this paper, we assume λ follows a geometric distribution with

a parameter ρ. The joint distribution of λ and ∆VS can be

written as

P (λ,∆VS) = π(λ)P (∆VS |λ).

When λ = k, all voltage data obtained before time k follow

the distribution g and all the data obtained at and after time k
follow the distribution f . Therefore, the likelihood probability

P (∆VS |λ) above is expressed as follows:

P (∆VS = ∆v
1:N |λ = k) =

k−1∏

n=1

g(∆v[n])
N∏

n=k

f(∆v[n]),
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for k = 1, 2, · · · , N + 1. When λ = N + 1, it refers to the

outage has not occurred and all data follow the distribution g.

Finding the outage time λ is equivalent to finding the

post-outage posterior probability P (H1|∆VS) = P (λ ≤
N |∆VS = ∆v

1:N ) at each time N . If the posterior prob-

ability is large enough, we can declare an outage in the grid.

At each time N ,

P (λ ≤ N |∆v
1:N )

=
N∑

k=1

P (λ = k,∆v
1:N )

P (∆v1:N )
,

=
1

P (∆v1:N )

N∑

k=1

π(λ = k)P (∆v
1:N |λ = k),

=C

N∑

k=1

π(k)

k−1∏

n=1

g(∆v[n])

N∏

n=k

f(∆v[n]), (2)

where C is a normalization factor such that
∑N+1

k=1 P (λ =
k|∆v

1:N ) = 1. In the normal operation, f(∆v[n]) is small

and P (λ ≤ N |∆v
1:N ) is small. Once an outage occurs at

time λ = k ≤ N , all data collected at n ≥ λ follow f(∆v[n])
and P (λ ≤ N |∆v

1:N ) becomes large. Hence, we can set a

threshold and declare an outage when the posterior probability

surpasses this threshold. This process is visualized in Fig. 3.
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Fig. 3: An example of outage detection based on the posterior

probability. λ is the outage occurrence time. τ is the outage

detection time. The brown dashed line is the detection thresh-

old.

A. Optimal Outage Detection

In the outage detection problem, we consider two per-

formance metrics: probability of false alarm and average

detection delay. The former metric evaluates how frequent a

detector falsely declares an outage in the pre-outage status. If

τ denotes the time of an outage being detected, the probability

of false alarm is defined as P (τ < λ). The latter metric

describes the average latency that a detector finds the outage

after it has occurred. The average detection delay is defined

as E(τ−λ|τ ≥ λ). For distribution grid line outage detection,

we want to find the outage time λ as quickly as possible with

a constraint of the maximum probability of false alarm α, i.e.,

minimize
τ

E(τ − λ|τ ≥ λ)

subject to P (τ < λ) ≤ α.
(3)

By the Shiryaev-Roberts-Pollaks procedure [25], we have the

following lemma to solve the optimization problem in (3).

Lemma 1. Given a maximum probability of false alarm α,

the following detection rule

τ = inf
{
N ≥ 1 : P (λ ≤ N |∆v

1:N ) ≥ 1− α
}
, (4)

is asymptotically optimal [13].

With Lemma 1, the threshold (brown dashed line) in Fig. 3

is 1−α. Lemma 2 shows the asymptotically optimal expected

detection delay.

Lemma 2. For a given probability of false alarm α, the

detection rule in (4) achieves the asymptotically optimal

detection delay

D(τ) = E(τ − λ|τ ≥ λ) =
| log(α)|

− log(1− ρ) +DKL(f‖g)
, (5)

as α → 0, where DKL(f‖g) is the Kullback-Leibler distance

and log denotes the natural logarithm [26].

The detection process is summarized in Algorithm 1. As

a highlight, the proposed approach does not require the grid

topology.

B. Line Outage Detection with Unknown Outage Pattern

Computing the posterior probability in (2) requires knowing

the parameters of distributions g and f . The parameters of

pre-outage distribution g can be estimated using the historical

data. For obtaining the parameters of f , we need to know the

outage pattern as a prior. One way is trying every possible

outage pattern and identifying the most similar one. However,

this approach is infeasible because the outage patterns can

grow exponentially with the grid size. Also, many DERs in

distribution grids are not operated by the utilities. Therefore,

their topology information is usually unknown [27].

In this section, instead of searching the most likely post-

outage distribution, we propose a method to learn f from

data using the maximum likelihood method in Lemma 3. The

computational complexity of our approach is insensitive to the

number of out-of-service branches.

Lemma 3. Using observed data ∆v
1:N , The maximum

likelihood estimators of the post-outage distribution f ∼
N (µ1,Σ1) are

µ̂1 =

∑N

k=1 π(k)
∑N

n=k ∆v[n]
∑N

k=1 π(k)(N − k + 1)
, (6)

Σ̂1 =

∑N

k=1 π(k)
∑N

n=k(∆v[n] − µ̂1)(∆v[n] − µ̂1)
T

∑N

k=1 π(k)(N − k + 1)
. (7)

The proof of Lemma 3 is given in Appendix A. With

the estimates of µ1 and Σ1, we can compute the posterior

probability in (2) and apply the optimal detection rule in (4).

C. Line Outage Detection with Voltage Magnitudes Only

Since PMUs have not been widely installed in distribution

grids, the voltage phase angles are hard to be obtained in the

real-world grids. To resolve this issue, in this section, we prove

that the optimal line outage detection approach in Lemma 1
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only requires voltage magnitude data. We define the incremen-

tal change of voltage magnitude as ∆|v[n]| = |v[n]|−|v[n−1]|
and use the random variable ∆|V | to represent the voltage

magnitude change.

Theorem 2. If the change of current injection at each bus

is approximately independent and no branch connects bus i
and bus k, the voltage magnitude changes at bus i and bus

k are conditionally independent, given the voltage magnitude

changes of all other buses, i.e. ∆|Vi| ⊥ ∆|Vk| | {∆|Ve|, e ∈
S\{i, k}}.

Proof. For bus i, we can rewrite (1) as

Vi =
1

Yii

(Ii +
∑

e∈N (i)

VeYie)

Vie
−jθi =

1

Yii

(Iie
−jθi +

∑

e∈N (i)

Vee
−jθiYie)

|Vi| =
1

Yii

(Iie
−jθi +

∑

e∈N (i)

|Ve|e
j(θe−θi)Yie). (8)

In the secondary distribution grids, the phase angle difference

between two neighbors’ buses is relatively small [28], i.e.,

θi − θe ≃ 0 for e ∈ N (i). Hence, (8) is approximated as

|Vi| ≃
1

Yii

(Iie
−jθi +

∑

e∈N (i)

|Ve|Yie). (9)

For incremental change of voltage magnitude ∆|Vi|, given

∆|Ve| = ∆|ve| for all e ∈ S\{i, k}, the equation above

becomes to

∆|Vi| =
1

Yii

(∆Iie
−jθi +

∑

e∈N (i)

∆|ve|Yie).

Similarly, ∆|Vk| = (∆Ike
−jθk +

∑
e∈N (k) ∆|ve|Yke)/Ykk.

Since Ii and Ik are multiplied with constants, ∆Iie
−jθi and

∆Ike
−jθk are still independent. Hence, ∆|Vi| and ∆|Vk| are

conditionally independent given ∆|VS\{i,k}|.

With the proof of Theorem 2, the optimal detection rule in

(4) still holds for voltage magnitude data, i.e.,

τ = inf{N ≥ 1 : P (λ ≤ N | ∆|v1:N |) ≥ 1− α}. (10)

For the voltage magnitude data, we can still use the maximum

likelihood estimators in (6) and (7) for unknown outage

patterns.

IV. OUT-OF-SERVICE BRANCH IDENTIFICATION

Identifying the out-of-service branch is important in the

urban distribution grid operation. In metropolitan areas, many

branches are underground and not well documented. There-

fore, an efficient and accurate outage localization approach

can reduce the power interruption time significantly. In the

following part, we will propose a real-time outage localization

method based on the voltage measurements.

Lemma 4. Assuming random vectors X, Y, and Z follow

Gaussian distributions, given Z = z, if X and Y are

conditionally independent, their conditional covariance is zero

[29].

Because of Theorem 1 and Theorem 2, the voltage changes

at the two ends of the out-of-service branches are conditionally

independent after an outage. Due to Lemma 4, we can compute

the conditional covariance matrix of every possible pair of

buses in the grid and check if the off-diagonal term changes

from a non-zero element to zero. When the off-diagonal term

changes to zero, we can identify the out-of-service branches.

Usually, the conditional covariance can be estimated based

on the voltage measurements. However, a large set of post-

outage data is required to have an accurate estimation, and

the delay of localization is long. To enable real-time outage

localization, alternatively, we use the covariance matrix Σ to

compute the conditional covariance. This approach allows us

to localize the outage even if we do not know the distribution

grid topology. In the case that the post-outage probability

distribution f is unknown, we can use Σ̂1 in (7) to compute

the conditional covariance. For bus i and bus j, suppose

I = {i, j} and J = S\{i, j}, the covariance of the joint

Gaussian distribution can be decomposed as

Σ =

[
ΣII ΣIJ

ΣT
IJ ΣJJ

]
.

The conditional covariance matrix can be computed by the

Schur complement [30], i.e.,

ΣI|J = ΣII − ΣIJΣ
−1
JJΣT

IJ . (11)

If the voltages at bus i and bus j are conditionally independent,

the off-diagonal term of ΣI|J is zero, i.e., ΣI|J (1, 2) =
ΣI|J (2, 1) = 0. Therefore, we can compare the conditional

covariance of every bus pairs before and after an outage. If

the conditional covariance changes to zero after an outage,

we localize one line outage event. This computation can be

repeated when Σ̂1 is updated based on the latest available

measurements. In Section V, we illustrate the similar perfor-

mances using the true post-outage covariance matrix Σ1 and

the estimated covariance matrix Σ̂1.

Fig. 4: An 8-bus system. A node represents a bus and a line

represents a branch. The dashed lines are additional branches

with the same admittance as the branch connected bus 7 and

bus 8.

Fig. 5 visualizes the conditional correlation of a 8-bus

system with loops (see Fig. 4) before and after branch 2-6

is out-of-service. The conditional correlation between bus i
and bus j is defined as

ρi,j =
ΣI|J (1, 2)√

ΣI|J (1, 1)× ΣI|J (2, 2)
. (12)

We can observe that the conditional correlation between bus

2 and bus 6 has the most significant change. Therefore, we can

locate the out-of-service branch is the branch 2-6.
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Fig. 5: Absolute conditional correlation before and after an

outage (branch 2-6).

We summarize the proposed line outage detection and local-

ization algorithm in Algorithm 1. If only voltage magnitudes

are available, we can apply the same procedure using ∆|v1:N
S |.

Algorithm 1 Distribution Grid Line Outage Identification

1: At each time N :

2: if parameters of post-outage distribution f are unknown

then

3: estimate µ̂1 and Σ̂1 using (6) and (7) with the observed

data ∆v
1:N
S

4: end if

5: Compute P (H1|∆v
1:N
S ) by (2).

6: if P (H1|∆v
1:N
S ) ≥ 1− α then

7: Report an outage event and τ = N
8: Compute ΣI|J by (11) using Σ1 or Σ̂1 for every pair

of buses

9: if ΣI|J = 0 for I = {i, j} then

10: Report the branch between bus i and bus j is out-of-

service

11: end if

12: end if

At time N , the computational complexity of outage detec-

tion only depends on the grid size, as shown in (2) and (4). As

presented in (11) and (12), the computational complexity of

outage localization also only depends on the grid size. In our

numerical simulations, for distribution grids with up to 200
buses, the process outlined in Algorithm 1 can be completed

within 10 seconds using a modern desktop computer at each

time N . Compared with smart meter sampling rate, which is

usually ranging from 1 minute to 1 hour, the computational

delay of the outage identification is negligible. Hence, the

proposed line outage identification algorithm can be used for

real-time applications.

V. SIMULATION AND RESULTS

The simulations are implemented on the IEEE PES distri-

bution networks for IEEE 8-bus and 123-bus networks [19]

and six European distribution grids [20]. To validate the

performance of the proposed approach on loopy networks, we

add several branches to create loops in all systems. The loopy

8-bus system is shown in Fig. 4. For 123-bus system, we add

a branch between bus 77 and bus 120 and the other branch

between bus 50 and bus 56. The admittance are the same as the

branch between bus 122 and bus 123. For European systems,

the loopy modifications are detailed in [18]. In each network,

bus 1 is selected as the slack bus. The historical data have

been preprocessed by the MATLAB Power System Simulation

Package (MATPOWER) [31].

We use the real power profile of distribution grids from

Pacific Gas and Electric Company (PG&E) in the subsequent

simulation. This profile contains anonymized and secure smart

meter readings over 110, 000 PG&E residential customers

for one year spanning from 2011 to 2012. The reactive

power qi[n] at bus i and time n is computed according to

a randomly generated power factor pfi[n], which follows a

uniform distribution, e.g. pfi[n] ∼ Unif(0.8, 1). To obtain

measurements form voltage phasors at time n, i.e. vi[n], we

run a power flow to generate the states of the power system.

To obtain time-series data, we run the power flow to generate

voltage data over a year.

In this simulation, we considered three common outage

scenarios:

1) Mesh networks. In this system, after an outage, most

buses will not have zero voltages because they can

receive powers from multiple branches. This outage

scenario usually happens in urban areas.

2) Radial networks with high DER penetrations. In this

case, some buses will be disconnected from the main

grid. However, they are still powered by DERs and thus,

their voltages will not be zero. This outage case is a

typical scenario in residential areas.

3) Radial networks without DERs. In this case, when a

line outage occurs, some buses will be disconnected

from the main grid and have zero voltage magnitudes.

These smart meters stop to transmit measurements, but

they send last gasp messages before disconnecting from

the grids. Therefore, we can set measurements from all

smart meters that send last gasp message zero. Because

the bus voltages have no variation after outages, our

method can quickly detect and localize this type of

outages.

When multiple induction motors are presented in distribu-

tion grids, residual voltages may exist after the terminal buses

disconnect from the main grid [32]. If the residual voltage

is above smart meter measurement threshold and lasts for

a certain period of time (e.g., a few minutes to an hour,

depending on the smart meter sampling frequency), the outage

case is similar to outage scenario 2 above. If the residual

voltage is below the measurement threshold, smart meters may

not report measurements. In this case, smart meters send last

gasp signal and the outage detection case is similar to the

outage scenario 3 above.

A. Outage Detection in Mesh Distribution Grids

Fig. 6 illustrates the complementary posterior probability

1− P (H1|∆v
1:N ) for detecting two line outages in loopy 8-

bus system (Fig. 4) based on voltage magnitude data ∆|VS |.
In this test, branches 3-4 and 2-6 have outages. The false alarm

rate is 10−6. For the complementary posterior probability,

the threshold is α = 10−6. To have a better understanding
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of how our proposed outage detection algorithm works, we

assign a uninformative parameter for the prior distribution, i.e.,

ρ = 10−4. The outage time is λ = 21. When the parameters

of post-outage distribution are known, the complementary

posterior probability immediately drops below the threshold

at N = 21. When the parameters are unknown, one more

time step is required to achieve detectable probability. Since

the voltage magnitudes are collected every hour, the additional

delay is one hour when the outage pattern is unknown. We

want to highlight that although the delay is one hour, the

customers do not experience power outage because of the mesh

structure. Later, we show that we can reduce the latency by

increasing the sampling frequency of smart meters.

5 10 15 20 25 30
Time N

10-10

10-5

100

1
−

P
(H

1
|∆

V
1
:N
)

Known post-outage distribution (Benchmark)
Unknown post-outage distribution
Threshold α

Fig. 6: Complementary posterior probability for outage detec-

tion. The branches 3-4 and 2-6 have outage. α = 10−6, ρ =
10−4.

In Fig. 7, the expected delay divided by | log(α)| is plotted

as a function of | log(α)| for two cases: f is known and f is

unknown. The choices of abscissa and ordinate are motivated

by Lemma 2. Specifically, the asymptotically optimal detection

delay in Lemma 2 can be rewritten as

D(τ)

| log(α)|
=

1

− log(1− ρ) +DKL(f‖g)
.

For a particular outage pattern, the KL distance between

the pre-outage distribution g and the post-outage distribution

f is fixed. Additionally, if the prior distribution is known,

− log(1− ρ) +DKL(f‖g) is a constant. Hence, the detection

delay D(τ) becomes a function of probability of false alarm α.

Plotting the relationship between | log(α)| and
D(τ)

| log(α)| helps to

explore the asymptotical property of the proposed algorithm.

We also show the limiting value of the normalized asymptoti-

cally optimal detection delay 1/(− log(1−ρ)+DKL(f‖g)) in

Fig. 7. All plots are generated by Monte Carlo simulation over

1, 000 replications. In this simulation, the prior distribution

of outage time λ has a geometric probability distribution

with parameter ρ = 0.04. The start time of test is randomly

selected within one year. In Fig. 7, our approach, which

learns the parameters of the post-outage distribution from

the voltage measurements, has identical performances as the

optimal method that has known f . Also, our approach can

achieve the optimal expected detection delay asymptotically.

As shown in Fig. 7, when the false alarm rate α is small, our

approach can report the outage immediately (i.e., detection

delay is less than one hour), which can significantly reduce

the impacts of power outages. In [33], an optimal change-

point detection approach is proposed to identify line outages

in transmission grids using PMU data. Although the grid type

is different, our method has the similar performance as [33]

and both converge to the asymptotical detection delay bound

1/(− log(1−ρ)+DKL(f‖g)). Specifically, for the loopy 123-

bus system, with α = 10−5, our algorithm needs 4.89 time

steps to detect outages by using ∆|VS |. The algorithm in [33]

uses ∆VS for outage detection and requires 4.91 time steps

to detect outages. Hence, both methods need the same amount

of data for detecting outages but our method only requires the

smart meter data.
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| log(α)|
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0.5

1

1.5
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2.5

3

3.5

D
(τ
)

|l
o
g
(α

)|

Known post-outage distribution (Benchmark)
Unknown post-outage distribution
Limit

Fig. 7: Plots of the slope
D(τ)

| log(α)| against | log(α)| for outage

detection for loopy 123-bus system. False alarm rate α ranges

in [0.5, 10−20]. Branch 73-74 has an outage.

B. Outage Detection in Radial Distribution Grids with DERs

In a radial distribution grid, a line outage will lead to

several isolated islands. However, with the integration of

DERs, such as solar panels and batteries, some buses can

still receive powers. In mesh systems, the continuous power

supply from DERs also makes the outage detection difficult.

In this section, we simulate the line outage in IEEE 8-bus and

123-bus systems and six European medium- and low-voltage

distribution systems based on voltage magnitude data [18],

[20]. Similar to the previous section, we randomly select the

start time within one year. Also, we select a few buses in the

distribution grid to have solar power generator with a battery

as the storage. Thus, there is a power supply during the entire

day. If the battery is unavailable, the outage can be directly

detected when the nodal voltages are zero. For the solar panel,

we use the power generation profile computed by PVWatts

Calculator, an online application developed by the National

Renewable Energy Laboratory (NREL) [34]. The solar power
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generation profile is computed based on the weather history

in North California and the physical parameters of ten 5kW

solar panels. The power factor is fixed as 0.90 lagging, which

satisfies the regulation of many U.S. utilities [35] and the IEEE

standard [36].

TABLE I: Average Detection Delay (Time Step) of Line

Outage Detection in Distribution Grids with DERs. α = 10−5.

The post-outage Distribution f is Unknown.

System Total Total ∆VS ∆|VS |
Branches DER (1 min) (60 min)

8-bus 7 8 0.12 0.12

8-bus, 2 loops 9 8 0.13 0.15

123-bus 122 12 3.62 4.77

123-bus, 2 loops 124 12 3.53 4.89

LV suburban 114 10 2.81 5.00

LV suburban 114 20 2.99 5.00

LV suburban 114 33 3.23 5.00

LV suburban mesh 129 33 4.95 5.83
15 loops

MV urban 34 7 1.11 2.02

MV urban 35 7 1.11 1.29
switch 34-35, 1 loop

MV urban 37 7 1.12 1.29
3 switches, 3 loops

MV two stations 46 10 0.92 1.33

MV two stations 48 10 0.87 1.35
2 switches, 2 loops

MV rural 116 20 1.13 2.44

MV rural 119 20 1.98 3.01
3 switches, 3 loops

Urban 3237 300 11.89 29.23

LV large, 465 loops 4030 300 33.29 88.40

Table I summarizes the average detection delay in eight

distribution grids with 14 configurations. In each network, we

compare the detection performance between voltage magni-

tude and phase (∆VS) and voltage magnitude only (∆|VS |).
We choose ∆VS with 1 minute sampling rate to demonstrate

the relative faster metering speed and compare to ∆VS with 1
hour for normal smart meters data. We use linear interpolation

method to generate the 1 minute data from the hourly power

profile. Although the sampling frequencies are different, the

additional amount of voltage magnitude data for outage detec-

tion is relatively small (1-3 time steps) for most networks. This

highlights that using voltage magnitude can achieve the similar

detection performance as using both voltage magnitude and

phase angles. Compared with the distribution grid line outage

identification method proposed in [37], our approach needs

fewer samples with the same probability of false alarm. For the

IEEE 123-bus system, which is a radial network, our algorithm

has a detection delay of 4.77 time steps using ∆|VS | with

α = 10−5 and the method in [37] has a delay of 10.45 time

steps with the same α. A note is that we do not optimize

the sensor placement for the approach in [37], which may

reduce the detection delay. Also, the method in [37] can only

be applied to radial networks but ours can be deployed to both

radial and mesh grids.

For large-scale distribution grids, we need more data to

detect outages when only voltage magnitudes are available.

The reason is that the dimension of the covariance matrix

is high and more data are needed for accurate estimation.

When some grid topology information is known, this issue

can be addressed by decomposing the covariance matrix since

the distribution grid is usually sparse. For example, in the

MV distribution grid presented in Fig. 8, there are multiple

LV distribution grids and each of them is connected via a

common MV grid. Therefore, we only need to identify outage

within each LV grid and apply another outage detector for

the MV grid. Such way can help to reduce the computational

complexity. Another case is that we can split the grid into

different clusters when a detailed topology is available. In

Fig 9, we can apply outage identification to each clusters for

buses and, hence, reduce the dimension of covariance matrix.

Fig. 8: A rural median voltage distribution grid (MV rural)

[20]. Each color represents one medium voltage branch. The

dots represent the substations and the low voltage grids are

connected via these substations.

Fig. 9: A suburban low voltage network (LV suburban) [20].

The roof-top solar power generation can highly correlated

within one LV distribution grid and may jeopardize Assump-

tion 1. To validate our algorithm in this scenario, we use

the data from Pecan Street [38], which contains hourly load

measurements for 345 houses with roof-top PV integrations

in Austin, Taxes. The measurements include both power con-

sumption and renewable generation. Table II summarizes the

average detection delay using Pecan Street data for both radial

and mesh distribution grids. Compared wit the results of the

same grid in Table I, we do not observe any major performance

degradation. Hence, the results in Table II demonstrate that our

proposed algorithm can be applied to high-penetration grids.

C. Line Outage Localization

When a branch has an outage, the conditional correlation

defined in (12) becomes zero. Fig. 10 shows the absolute
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TABLE II: Average Detection Delay (Time Step) of Line

Outage Detection using Pecan Street Data. α = 10−5. The

post-outage Distribution f is Unknown.

System Total Total ∆VS ∆|VS |
Branches DER (1 min) (60 min)

123-bus 122 12 2.91 5.05

123-bus, 2 loops 124 12 3.37 4.59

LV suburban mesh 129 33 5.08 5.70
15 loops

MV urban 34 7 1.28 3.11

conditional correlation |ρi,j | of the loopy 8-bus system in

Fig. 4 after branch 3-4 and branch 2-6 have outages. The

red boxes indicate the branches that have outages. When the

post-outage distribution f is known, the true Σ1 is used to

compute the conditional correlation. Comparing Fig. 10a and

10b, clearly, the absolute conditional corrections of outage

branches change to zero after outages. The diagonal terms

are the self-correlation and equal to one. This observation

indicates that this proposed outage localization method is

sensitive to outages and validates our proof in Theorem 1.

When f is unknown, by comparing Fig. 10a and 10c, we can

still identify the outage lines. Therefore, the proposed method

can still localize the out-of-service branches as accurate as the

optimal approach.

(a) Pre-outage (b) Post-outage

(c) Post-outage with unknown distri-
bution

Fig. 10: Absolute conditional correlation of 8-bus system

before (a) and after (b & c) an outage (Branches 3-4 and

2-6).

D. Sensitivity to Data Resolutions

The “ADRES-Concept” project load profile [21], [22] is

used to understand the proposed approach’s sensitivity to data

resolution. This data set contains real and reactive power

profiles of 30 houses in Upper-Austria. The data were sampled

every second over 14 days. The voltage data are generated

using a subset of LV suburban mesh grid with 33 DERs

integrated. To simulate the damage patterns, we randomly set

two branches to be out-of-service. Fig. 11 shows the average

detection delay with different data resolutions. The results are

produced using Monte Carlo simulation over 1, 000 replica-

tions. We can see that with the increase of data resolution, the

average detection delay is decreasing. The reason is that the

distribution change is more significant when data resolution is

large. However, for the absolute detection time delay, the high

resolution data sources require less time. For example, only 5

seconds are needed to detect outages when the sampling rate

is 1 second. As the sampling frequency is reduced, less data

samples are required for detection. When the sampling rate is

1 minute, the proposed algorithm needs less than 3 minutes

to detect outages. When the sampling rate is 30 minutes and

one hour, the average detection delay is zero. Therefore, the

major bottleneck of the detection delay is the sampling period.

As discussed in Section IV, the computational complexity of

both outage detection and localization only depends on the

grid size. The computational time of a grid with less than 200
buses is within 10 seconds. Most smart meter systems have a

sampling rate between 1 minute and 1 hour today. Hence, our

algorithm can immediately detect the outage when the post-

outage measurement is available.
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Fig. 11: The average detection delay with different data

resolutions. α = 10−5.

E. Sensitivity to Data Accuracy

Smart meter measurements are usually noisy. Thus, the anal-

ysis of our algorithm under different levels of measurement

noises is critical for understanding the performance in a real-

world scenario. In the U.S., ANSI C12.20 standard (Class 0.5)

permits the utility smart meters to have an error within ±0.5%
[39], [40]. The standards in other countries have the similar

requirement, e.g., [41]. Table III shows the average detection

delay with different noise levels over 1,000 iterations. The

simulation setup is identical to the one in Section V-A and V-B.

Hence, the data resolution is one hour. When noise level is less

than 0.1%, the detection delay is similar to the detection delay

of noiseless measurements. Since most measurement noises

are zero-mean additive noise and we use the measurements’

sufficient statistics for outage detection, the noise only impacts

the estimation of covariance matrix. When noise level is 0.2%,

one more data point is needed for detection.
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TABLE III: Average Detection Delay (Time Step) of Line

Outage Detection with DERs under Different Noise Levels.

α = 10−5. The Post-outage Distribution f is Unknown. Only

Voltage Magnitudes ∆|VS | are Used.

Noise level LV suburban mesh MV rural

0% 5.83 1.29

0.05% 5.42 1.32

0.1% 6.22 1.83

0.2% 7.90 2.53

Other types of device malfunctions may also impact the

algorithm performances. For example, if the smart meter is

not well calibrated, it may consistently produce measurements

that are lack of precision and accuracy. For the proposed

method, rather than directly use the raw measurements, we

use sufficient statistics of data, e.g., mean and variance, for

outage detection. Thus, if the systematic error persists across

all measurements, our algorithm can still report outages. The

anomaly data can degrade the performance of our proposed

algorithm because the underlying data statistics may change

due to non-outage events. There are multiple ways to minimize

impacts. For example, data cleansing can be applied before

processing data for outage identification. Also, we can reduce

the probability of false alarm α to increase the confidence of

outage report.

F. Short-Circuit Faults Identification

Besides line outages, another category of fault in distri-

bution grids is short-circuit faults. In this subsection, we

simulate the short-circuit fault in the radial IEEE 123-bus

system via CYME power system analysis software. The fault

scenarios are summarized in Table IV. In the short-circuit fault

analysis, the data collected before n = 20 are pre-fault and the

measurements collected after n = 20 are post-fault. As plotted

in Fig. 12, the means of voltage magnitudes |V [n]| change

significantly after faults. For fault type LG, LL, and LLG,

the nodal nominal voltages drop to a non-zero value. These

fault types are similar to the outage scenario 1, which we

have discussed earlier in this section. As shown in Table. IV,

less than one time step is needed to detect these faults. As

the reference, to detect line outage between bus 67 and bus

160, the proposed algorithm has zero detection delay. For LLL

and LLLG, the nodal nominal voltages drop to zero. Thus,

the detection case is similar to the outage scenario 3. Our

algorithm can immediately detect faults after they occurred.

TABLE IV: Short-Circuit Fault Types in the radial IEEE 123-

bus System

Branch Fault Type Detection Delay
(Time Step) D(τ)

67-160 Single line-to-ground fault (LG) 0.9
on phase A

67-160 Line-to-line fault (LL) 0.5
on phase AB

67-160 Double Line-to-ground fault (LLG) 0
on phase AB

67-160 Three-phase short-circuit fault (LLL) 0

67-160 Three-phase-to-ground fault (LLLG) 0
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(a) Bus 67
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Fig. 12: Nodal nominal voltage measurements in per unit for

different fault types in the radial IEEE 123-bus system.

VI. CONCLUSION

In this paper, we propose a new approach to automati-

cally detect and identify outages in urban distribution grids

with high renewable penetration. Specifically, we develop a

stochastic modeling of nodal voltage data stream and propose

a change point detection approach based on the probability

distribution changes due to outage events. As a highlight,

unlike existing approaches, our method is applicable to the

existing distribution grids because we require neither the grid

topology nor the outage pattern as a prior. Also, we only

need smart data measurements to achieve the optimal detection

performance. In addition to outage detection, we provide

theoretical proof that optimal out-of-service branch identifi-

cation can be achieved due to the conditional independence

of voltages based on the power flow analysis. We verify the

proposed algorithm on eight mesh and radial distribution grid

systems with and without DERs. From extensive simulations,

our algorithm can perfectly detect and identify outages in a

short time, with and without the integration of DERs.

There are multiple future works that can further enhance the

proposed algorithm. For example, as discussed in Section V-B,

the computationally complexity of line outage detection scales

up with the growth of grid size. A distributed or decentralized

approach may reduce the computational efforts. Additionally,

we discuss the impact of measurement noise, systemic errors,

and anomaly data in this paper. However, other types of data

quality issues may also degrade the performance, such as

missing data and fixed-point measurements. How to handle

these practical scenarios requires further investigation. In this
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paper, we focus on detecting and localizing the line outage

event. Identifying fault types that cause line outages is also an

interesting research direction. At last, dynamic topology esti-

mation and switch status identification share some similarities

with the proposed out-of-branch localization method, but also

have more rigorous requirements. How to apply the proposed

out-of-branch localization method to estimate topology is a

direction of future studies.

VII. ACKNOWLEDGEMENT

We would like to thank Jingyi Yuan from Arizona State

University for discussion on the short-circuit fault analysis.

APPENDIX

A. Proof of Lemma 3

Proof. To apply the maximum likelihood method, we need

to compute the partial derivative of the posterior probability

P (H1|∆v
1:N ). Unfortunately, P (H1|∆v

1:N ) is not a convex

function and we may have multiple estimates. To address this

challenge, we will provide an approximation of the posterior

probability P (H1|∆v
1:N ). Specifically, the log-probability

logP (H1|∆v
1:N ) is

logP (H1|∆v
1:N )

= logC + log

{
N∑

k=1

π(k)

k−1∏

n=1

g(∆v[n])

N∏

n=k

f(∆v[n];Θ)

}
,

(13)

where Θ = {µ1,Σ1} represents the unknown parameters

of f . In (13), the term within the braces is an expectation

of
∏k−1

n=1 g(∆v[n])
∏N

n=k f(∆v[n];Θ) over the prior distri-

bution π, Eπ(
∏k−1

n=1 g(∆v[n])
∏N

n=k f(∆v[n];Θ)). Also, the

logarithmic function is convex. Therefore, we can apply the

Jensen’s inequality [42] to approximate logP (H1|∆v
1:N ):

logP (H1|∆v
1:N )

≥ logC +

N∑

k=1

π(k)

(
k−1∑

n=1

log g(∆v[n]) +

N∑

n=k

log f(∆v[n];Θ)

)

=P̃ (H1|∆v
1:N ). (14)

Since g and f are Gaussian distributions, (14) can be written

as

P̃ (H1|∆v
1:N ) = logC +

N∑

k=1

−π(k)

2
·

(
k−1∑

n=1

log |2πΣ0|+ (∆v[n] − µ0)
TΣ−1

0 (∆v[n]− µ0)

+
N∑

n=k

log |2πΣ1|+ (∆v[n]− µ1)
TΣ−1

1 (∆v[n] − µ1)

)
.

Since P̃ (H1|∆v
1:N ) is convex, we can estimate µ1 by setting

∂P̃ /∂µ1 = 0. Specifically, we have

∂P̃ (H1|∆v
1:N )

∂µ1
=

N∑

k=1

−π(k)

2

N∑

n=k

(∆v[n] − µ1)Σ
−1
1 = 0.

Since

N∑

n=k

(∆v[n] − µ1) =

(
N∑

n=k

∆v[n] − (N − k + 1)µ1

)
,

the estimate of µ1 is

µ̂1 =

∑N

k=1 π(k)
∑N

n=k ∆v[n]
∑N

k=1 π(k)(N − k + 1)
.

For the covariance matrix Σ1, the partial derivative is

∂P̃ (H1|∆v
1:N )

∂Σ1
=

N∑

k=1

−π(k)

2

(
N∑

n=k

S[k]− (N − k + 1)Σ1

)

where S[k] =
∑N

n=k(∆v[n] − µ1)(∆v[n] − µ1)
T . Letting

µ1 = µ̂1 and ∂P̃ (H1|∆v
1:N )/∂Σ1 = 0, the covariance matrix

estimate is

Σ̂1 =

∑N

k=1 π(k)S[k]∑N

k=1 π(k)(N − k + 1)
.
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