
CS229 Final Report
Reinforcement Learning to Play Mario

Yizheng Liao
Department of Electrical Engineering

Stanford University
yzliao@stanford.edu

Kun Yi
Department of Electrical Engineering

Stanford University
kunyi@stanford.edu

Zhe Yang
Google Inc.

elenayang@google.com

Abstract—In this paper, we study applying Reinforcement
Learning to design a automatic agent to play the game Super
Mario Bros. One of the challenge is how to handle the complex
game environment. By abstracting the game environment into
a state vector and using Q learning — an algorithm oblivious
to transitional probabilities — we achieve tractable computation
time and fast convergence. After training for 5000 iterations, our
agent is able to win about 90% of the time. We also compare
and analyze the choice of different learning rate α and discount
factor γ.

I. INTRODUCTION

Using artificial intelligence (AI) and machine learning
(ML) algorithms to play computer games has been widely
discussed and investigated, because valuable observations can
be made on the ML play pattern vs. that of a human player, and
such observations provide knowledge on how to improve the
algorithms. Mario AI Competition [1] provides the framework
[2] to play the classic title Super Mario Bros, and we are
interested in using ML techniques to play this game.

Reinforcement Learning (RL) [3] is one widely-studied
and promising ML method for implementing agents that can
simulate the behavior of a player [4]. In this project, we
study how to construct an RL Mario controller agent, which
can learn from the game environment. One of the difficulties
of using RL is how to define state, action, and reward. In
addition, playing the game within the framework requires real-
time response, therefore the state space cannot be too large.
We use a state representation similar to [4], that abstracts
the whole environment description into several discrete-valued
key attributes. We use the Q-Learning algorithm to evolve
the decision strategy that aims to maximize the reward. Our
controller agent is trained and tested by the 2012 Mario AI
Competition evaluation system.

The rest of this report is organized as follows: Section 2
provides a brief overview of the Mario AI interface and the
Q-Learning algorithm; Section 3 explains how we define the
state, action, reward to be used in RL; Section 4 provides
evaluation results; Section 5 concludes and give some possible
future work.

II. BACKGROUND

In this section, we briefly introduce the Mario AI frame-
word interface and the Q-learning algorithm we used.

A. Game Mechanics and the Mario AI Interface

The goal of the game is to control Mario to pass the finish
line, and gain a high score one the way by collecting items and
beating enemies. Mario is controlled by six keys: UP (not used
in this interface), DOWN, LEFT, RIGHT, JUMP, and SPEED.
In the game, Mario has three modes: SMALL, BIG, and FIRE.
He can upgrade by eating certain items(mushroom and flower),
but he will lose the current mode if attacked by enemies. Other
than Mario, the world consists of different monsters (Goomba,
Koopa, Spiky, Bullet Bill, and Piranha Plant), platforms (hill,
gap, cannon, and pipe) and items (coin, mushroom, bricks,
flower). The game is over once SMALL Mario is attacked, or
when Mario falls into a gap. For more specific descriptions,
please see [4] and [1].

When performing each step, the Mario AI framework inter-
face call could return the complete observation of 22 x 22 grids
of the current scene, as shown in Figure 1. That is, an array
containing the positions and types of enemies/items/platforms
within this range. This is the whole available information for
our agent.

The benchmark runs the game in 24 frames per second.
The environment checking functions are called every frame.
Therefore, while training we have to train and update the
Qtable within 42 milliseconds.

B. ε-greedy Q-Learning

Q-learning treats the learning environment as a state ma-
chine, and performs value iteration to find the optimal policy. It
maintains a value of expected total (current and future) reward,
denoted by Q, for each pair of (state, action) in a table. For
each action in a particular state, a reward will be given and
the Q-value is updated by the following rule:

Q(st, at)← (1−αs,a)Q(st, at)+αs,a(r+γmax(Q(st+1, at+1)))
(1)

In the Q-learning algorithm, there are four main factors: current
state, chosen action, reward and future state. In (1), Q(st, at)
denotes the Q-value of current state and Q(st+1, at+1) denotes
the Q-value of future state. α ∈ [0, 1] is the learning rate, γ ∈
[0, 1] is the discount rate, and r is the reward. (1) shows that for
each current state, we update the Q-value as a combination of
current value, current rewards and max possible future value.

We chose Q-learning for two reasons:

1) Although we model the Mario game as approximately
Markov Model, the specific transitional probabilities

between the states is not known. Had we used the
normal reinforcement learning value iteration, we will
have to train the state transitional probabilities as
well. On the other hand, Q-learning can converge
without using state transitional probabilities (”model
free”). Therefore Q-learning suits our need well.

2) When updating value, normal value iteration needs
to calculate the expected future state value, which
requires reading the entire state table. In comparison,
Q learning only needs fetching two rows (values for
st and st+1) in the Q table. With the dimension of
the Q table in thousands, Q learning update is a lot
faster, which also means given the computation time
and memory constraint, using Q table allows a larger
state space design.

The learning rate α affects how fast learning converges. We
use a decreasing learning rate αs,a [5] different for different
(s, a) pairs. Specifically,

αst,at =
α0

of times action at performed in st
(2)

the equation is chosen based the criteria of proposed by
Watkins’ original Q-learning paper. He shows the following
properties of α is sufficient for the Q values to converge.

1) α(st, at)→ 0 as t→∞.
2) α(st, at) monotonically decreases with t.
3)

∑∞
t=1 α(st, at) =∞.

One can easily verify the series (2) satisfy all the properties.

The discount factor γ denotes how much future state is
taken into account during optimization. We evaluate under
several γ values and chooses 0.6 as the final value. We will
show that non-optimal learning parameters lead to highly
degenerated performance in the evaluation section.

When training our agent, we actually used ε-greedy Q-
learning to explore more states. The algorithm is a small vari-
ation of Q-learning: each step the algorithm chooses random
action with probability ε, or the best action according to the Q
table with probability 1 − ε. After performing the action, the
Q table is updated as in 1.

III. MARIO CONTROLLER DESIGN USING Q-LEARNING

In this section, we describe how we design the state, action,
and reward to be used in the Q-learning algorithm. We also
briefly comment on why we design the state as it is.

A. Mario State

We discretize the environment description into the follow-
ing integer valued attributes:

• Mario Mode: 0 - small, 1 - big, 2-fire.

• Direction: The direction of Mario’s velocity in current
frame. 8 directions + stay. Total of 9 possible values.

• If stuck: 0 or 1. Set true if Mario doesn’t make
movement over several frames.

• If on ground: 0 or 1.

• If can jump: 0 or 1.

• If collided with creatures in current frame: 0 or 1.

• Nearby enemies: denoting whether there is an enemy
in 8 certain directions in 3x3 window (or 4x3 window
in large/fire Mario mode).

• Midrange enemies: denoting whether there is an en-
emy in 8 certain directions in 7x7 window (or 8x7
window in large/fire Mario mode).

• Far enemies: denoting whether there is an enemy in 8
certain directions in 11x11 window (or 12x11 window
in large/fire Mario mode). Note the nearby, midrange,
and far enemies attributes are exclusive.

• If enemies killed by stomp: 0 or 1. Set true if enemy
killed by stop in current frame.

• If enemies killed by fire: 0 or 1. Set true if enemy
killed by fire in current frame.

• Obstacles: 4-bit boolean indicating whether there exist
obstacles in front of Mario. See figure 1.

A Mario state thus needs 39 bits to encode, meaning the
number of possible states is 239. However, in actual scenes no
every state will appear. As we use a hashtable to store the q
values, only states visited will be stored and tracked. At the
end of training, we found there are only about 20000 states in
the final table, and the number of states visited often (> 100
times) is even less, meaning the state space is very sparse.

The ”stuck” state variable is added to handle the situations
where the action taken doesn’t work as expected due to the
”position rounding problem”. For example, we notice when
Mario is close to a tube, the JUMP+RIGHT action is chosen
in order to jump up the tube, which is correct. However, when
Mario is too close to the tube, JUMP key will not work and
Mario won’t move. As a result Mario will be performing the
same action over and over (stucked). By adding a ”stuck” state
variable, we observe Mario is able to go into a new state and
choose different actions in order to break the loop.

Fig. 1. Mario Scene

The figure 1 shows a typical scene of the Mario environ-
ment consisting of the platform and enemies. The area within

dark blue, lighter blue, purple boxes indicates the range of
nearby, midrange, and far enemies respectively. For instance,
in the figure we have both mid-range and far enemies. In
the easy level we coped, we don’t distinguish different typed
enemies. The four red circles denote the obstacles array: if
there is obstacle the corresponding bit is set to 1.

B. Actions

The Mario agent performs one of 12 actions from the key
combination {LEFT, RIGHT, STAY} x {JUMP, NOTJUMP}
x {SPEED(FIRE), NOSPEED}.

C. Rewards

Our reward function is a combination of weighted state
attribute values and the delta distance/elevation it performs
from the last frame. Basically, moving forward, jumping
onto higher platforms and killing enemies will be positively
rewarded, whereas moving backward, colliding with enemies
and being stuck will be negatively rewarded. We also let the
reward of moving forward decrease when nearby enemies are
present. Note we carefully design our state such that the reward
R(s) is only a function of the state s, not based on what actions
are taken to reach s.

IV. EVALUATION RESULTS

For training the Q-learning algorithm, we firstly initialize
the Q-table entries with a uniform distribution, i.e. Q ∼
U (−0.1, 0.1). Then we trained the agent by 15000 iterations
on a fixed level for the three Mario modes. The order is: train
the level/episode 20 times for small Mario, 20 times for large
Mario, 20 times for fire Mario, repeat, etc. We believe in this
order the fire Mario will be able to use the Q table information
from previous runs even when he is attacked and downgraded.
During training the learning parameters are

α(st, at) =
α0

of times at performed in st
α0 = 0.8

γ = 0.6

ε = 0.3

For every 20 training episodes of each mode, we evaluate
the performance by running 100 episodes on the current Q ta-
ble and use the average metrics as the performance indicators.
The evaluation episodes are run with α = 0, ε = 0.01, so the
learning is turned off and random exploration is minimal. It is
purely a test of how good the policy is.

We use 4 metrics to evaluate performance

1) A composite ”score” combining weighted win status,
kills total, distance passed and time spent.

2) The probability the agent beats the level.
3) The percentage of monster killed.
4) The time spent on the level.

Figure. 2 shows the learning curves of evaluation score
using the previously described optimized parameters. The

Fig. 2. Evaluation Score

discount factor, γ, is 0.6, meaning that the Q-learning algo-
rithm tried to maximize the long-term reward. Obviously, our
algorithm demonstrates a learning curve and quickly converges
to the optimal solution after about 3000 training iterations.
At the end of training cycles, our average evaluation score is
around 8500. For some evaluation cycles, we can even achieve
9000 points, which is nearly the highest score human can
achieve in one episode.

In order to show the generalization, we also tested the
trained Q-learning algorithm with random episode seeds. The
results show that for most random seeds, our trained algorithm
performs reasonably good. The reason that one test performs
bad is that there always be some unknown situations, to which
Mario is not trained.

In addition, we plot the learning curves with fixed learning
rate (α = 0.15 throughout training) and low discount factor
(γ = 0.2). As discussed above, in our training algorithm, we
keep decreasing the learning rate. The figure indicates that with
a fixed learning rate, when it converges, the converged solution
is not optimal and the variance in scores is larger. A low
discount factor means that the learning algorithm maximizes
the short-term reward. In our learning algorithm, we gave
positive reward for right movement and negative reward for
left movement. If the algorithm tries to maximize short-term
reward, Mario will always move the right. However, in some
situations, Mario should stay or go left to avoid monsters.
In this case, the short-term reward maximization is not the
optimal solution.

Figure. 3 shows the winning probability learning curve. As
the early stage of learning process, the winning probability is
as low as 0.3. With the increase of training cycles, the winning
probability increases and converges to around 0.9. For the low
γ learning, even the average probability is increasing but the
variance is very high. For the fixed α learning, the learning
curve converges but the converged value is not optimal. The
curve demonstrates that our trained agent is consistently good
on beating the level!

Figure. 4 shows the percentage of monster killed. Since
we generated the training episode by the same seed and setup,
the total number of monsters within a episode is the same

Fig. 3. Winning Probability

Fig. 4. Percentage of Monster Killed

over training. At the beginning, the Q-values are generated
randomly. Therefore, the killing percentage is very low. The
learning curve shows fast convergence of the killing probability
within a few training episodes, due to the high reward we gave.
There are two reasons that we give high reward for killing.
Firstly, the killing action is given high score in evaluation and
therefore, we can achieve a high score in evaluation. Secondly,
the Mario is safer when he kills more monsters.

In this figure, the learning curve with fixed α shows a sim-
ilar performance to our optimal learning curve. The learning
curve with low γ has very low mean and high variance.

Figure. 5 shows the time spent for the Mario to pass a
episodes successfully. The optimal learning curve shows a fast
convergence within 250 iterations. The learning curve with low
γ has a similar performance as the optimal learning curve. The
reason is that the short-term reward maximization forces the
Mario to keep moving rightward. However, as we discussed
above, it is not optimal since the Mario will collide creatures
with high probability. The learning algorithm with fixed α
needs more time to win because the converged policy is not
the best.

Fig. 5. Time Spent in Frames

V. CONCLUSION

In this project, we designed an automatic agent using
Q-learning to play the Mario game. Our learning algorithm
demonstrates fast convergence to the optimal Q-value with
high successful rate. The optimal policy has high killing rate
and consistently beat the level. In addition, our results show
that the state description is general enough, that our optimal
policy can tackle different, random environments. Further, we
observe that long term reward maximization overperforms
short term reward maximization. Finally, we show that using
decaying learning rate converges to a better policy than using
fixed learning rate.

Our RL approach could be extended in a number of ways.
For example, in our learning algorithm, we did not design
the state for the Mario to grab mushroom and flowers. In
addition, our algorithm focuses on optimizing the successful
rate. Possible future work may include, but is not limited to:

• Extend our state to allow grabbing coins and upgrad-
ing.

• Vary the reward function to realize different objectives
(e.g. killer-type Mario)

• Make the state design more precise to cope with the
position rounding problem.

• Explore other RL approaches such as SARSA[6] and
fuzzy-SARSA[7] to reduce state space and increase
robustness.

We believe that our work provides a good introduction to this
problem and will benefit the people with interests in using
reinforcement learning to play computer games.

VI. APPENDIX

• Source code: http://code.google.com/p/cs229mario

• Demo 1: http://youtu.be/GtWR1zEHoNQ

• Demo 2: http://youtu.be/QaPTHnd3JS8

REFERENCES

[1] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario ai
competition,” in Proceedings of the IEEE Congress on Evolutionary
Computation, Citeseer, 2010.

[2] “The mario ai competition,” 2012, http://www.marioai.org/.
[3] R. Sutton and A. Barto, Reinforcement learning: An introduction, vol. 1.

Cambridge Univ Press, 1998.
[4] J. Tsay, C. Chen, and J. Hsu, “Evolving intelligent mario controller by

reinforcement learning,” in Technologies and Applications of Artificial
Intelligence (TAAI), 2011 International Conference on, pp. 266–272,
IEEE, 2011.

[5] Watkins and Dayan, Q-learning.Machine Learning. 1992.
[6] G. A. Rummery and M. Niranjan, “On-line q-learning using connectionist

systems,” tech. rep., 1994.
[7] L. Jouffe, “Fuzzy inference system learning by reinforcement methods,”

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 28, pp. 338 –355, aug 1998.

